Publication: Efectos de la manipulación de la especificidad del ejercicio en el entrenamiento de fuerza sobre el rendimiento en ciclismo
Authors
Rodríguez Rielves, Víctor
item.page.secondaryauthor
Escuelas::Escuela Internacional de Doctorado
item.page.director
García Pallarés, Jesús ; Barranco Gil, David ; Brea Alejo, Lidia
Publisher
publication.page.editor
publication.page.department
DOI
item.page.type
info:eu-repo/semantics/doctoralThesis
Description
Abstract
En esta Tesis Doctoral se valida un novedoso procedimiento para la evaluación del perfil Carga – Cadencia (Fuerza - Velocidad) y la determinación de la fuerza dinámica máxima absoluta (FDMa) en el propio gesto del pedaleo. En concreto, se identifica un algoritmo para estimar fielmente (R2 = 0,978; SEE = 9 rpm) la magnitud de carga relativa de pedaleo (% FDMa) producida durante un esfuerzo all-out atendiendo a la cadencia alcanzada. Nuestros hallazgos constatan una alta fiabilidad test-retest de este perfil Fuerza - Velocidad de pedaleo, así como una alta estabilidad ante cambios en el rendimiento deportivo del ciclista (tras 10 semanas de intervención), o incluso cuando se comparan diferentes niveles de FDMa de los ciclistas. Este nuevo procedimiento permite monitorizar los cambios inducidos por el entrenamiento en diferentes zonas de la curva Fuerza - Velocidad de pedaleo.
Así mismo, en esta Tesis Doctoral se identificó la resistencia relativa (%FDMa) a la que se enfrenta un ciclista durante los esfuerzos que desarrolla habitualmente en competición y en entrenamiento (incluido el entrenamiento de torque), tomando como referencia los principales dominios de intensidad de la vía aeróbica (umbral aeróbico – VT1, máximo estado estable - MLSS, umbral anaeróbico – VT2, potencia aeróbica máxima -PAM) y anaeróbica (capacidad y potencia anaeróbica). Los resultados permitieron esclarecer que las demandas relativas de fuerza de pedaleo en un amplio espectro de intensidades metabólicas pueden considerarse en general bajas o muy bajas, incluso en el llamado "entrenamiento de torque" (<54 % de FDMa), intensidades sustancialmente menores a las necesarias para producir adaptaciones neuromusculares y morfofuncionales en deportistas experimentados (>60 %FDMa).
Finalmente, un grupo de 37 ciclistas bien entrenados (promedio VO2max de 62 ml·kg-1·min-1) que mantuvieron el mismo volumen total y por zonas de entrenamiento de pedaleo (promedio de 10.7 h semanales), fueron divididos de manera randomizada y contrabalanceada en 3 grupos de intervención: i) entrenamiento de fuerza en el ejercicio de Sentadilla (Off-bike RT); ii) entrenamiento de fuerza sobre la propia bicicleta mediante un novedoso procedimiento original de esta Tesis Doctoral (On-bike RT); y iii) sin entrenamiento de fuerza (Control). Durante 10 semanas, los dos grupos de intervención de fuerza (Off-bike y On-bike) implementaron un programa de entrenamiento de fuerza idéntico en todos los componentes de la carga: frecuencia semanal (2 sesiones por semana), número de series (5 series por sesión), recuperaciones entre series (4 min), descanso entre sesiones (72 h), volumen intra-serie o grado de esfuerzo en la serie (7 repeticiones o 7 ciclos de pedaleo, respectivamente) e intensidad (70% 1 repetición máxima [RM] en sentadilla completa y 70% FDMa de pedaleo, respectivamente). Por lo tanto, la preparación de ambos grupos de entrenamiento sólo difería en el ejercicio utilizado para implementar el estímulo de fuerza. Mediante una completa batería de test de valoración se evidenció que, si bien el grupo control experimentó descensos o mantenimientos de su rendimiento neuromuscular y específico, ambos grupos de entrenamiento de fuerza (Off-bike y On-bike) desarrollaron mejoras sustanciales en la PAM (ES = 0.37 – 0.54), VT1-VT2 (ES = 0.20 – 0.27), capacidad y potencia anaeróbica (ES = 0.20 – 0.37), tiempo hasta la extenuación a VT2 (ES = 0.30 – 0.33), así como sobre la FDMa desarrollada en el ejercicio de Sentadilla y el propio ejercicio de pedaleo (ES =0.16 - 0.86). En relación a los efectos adversos o secundarios asociados al entrenamiento de fuerza, ninguno de los grupos de intervención (Off-bike y On-bike) experimentó un aumento significativo de su masa corporal, ni de su masa magra, ni de incidencia lesional. El entrenamiento de fuerza On-bike surge como una alternativa eficaz, eficiente y segura para desarrollar las adaptaciones asociadas al rendimiento específico de ciclistas bien entrenados.
This Doctoral Thesis validates a novel procedure for the evaluation of the Load - Cadence (Force - Velocity) profile and the determination of the maximum absolute dynamic force (FDMa) in the pedaling gesture itself. In particular, an algorithm is identified to estimate faithfully (R2 = 0.978; SEE = 9 rpm) the magnitude of relative pedaling load (% FDMa) produced during an all-out effort according to the cadence reached. Our findings show a high test-retest reliability of this Force - Pedaling speed profile, as well as a high stability to changes in the cyclist's sport performance (after 10 weeks of intervention), or even when comparing different levels of cyclists' FDMa. This new procedure allows to monitor the changes induced by training in different zones of the Force - Pedaling speed curve. Likewise, this Doctoral Thesis identified the relative resistance (%FDMa) faced by a cyclist during the efforts he/she usually develops in competition and training (including torque training), taking as reference the main intensity domains of the aerobic (aerobic threshold - VT1, maximum steady state - MLSS, anaerobic threshold - VT2, maximum aerobic power - MAP) and anaerobic (anaerobic capacity and anaerobic power) pathways. The results allowed to clarify that the relative demands of pedaling force in a wide spectrum of metabolic intensities can be considered in general low or very low, even in the so-called “torque training” (<54 % of FDMa), intensities substantially lower than those necessary to produce neuromuscular and morphofunctional adaptations in experienced athletes (>60 %FDMa). Finally, a group of 37 well-trained cyclists (average VO2max of 62 ml-kg-1-min-1) who maintained the same total volume and zones of pedaling training (average of 10.7 h per week), were randomly and counterbalanced way assigned into 3 intervention groups: i) strength training on the Squat exercise (Off-bike RT); ii) strength training on the bicycle itself using a novel procedure original to this PhD Thesis (On-bike RT); and iii) no strength training (Control). For 10 weeks, the two strength intervention groups (Off-bike and On-bike) implemented an identical strength training program in all load components: weekly frequency (2 sessions per week), number of sets (5 sets per session), recoveries between sets (4 min), rest between sessions (72 h), intra-set volume or degree of effort in the set (7 repetitions or 7 pedal cycles, respectively) and intensity (70% 1 repetition maximum [RM] in full squat and 70% pedal FDMa, respectively). Therefore, the preparation of both strength training groups differed only in the exercise used to implement the strength stimulus. Through a complete battery of assessment tests it was evidenced that, while the control group experienced decreases or maintenance of their neuromuscular and specific performance, both strength training groups (Off-bike and On-bike) developed substantial improvements in MAP (ES = 0. 37 - 0.54), VT1-VT2 (ES = 0.20 - 0.27), anaerobic capacity and power (ES = 0.20 - 0.37), time to exhaustion at VT2 (ES = 0.30 - 0.33), as well as on FDMa developed in the Squat exercise and the pedaling exercise itself (ES =0.16 - 0.86). In relation to the adverse or secondary effects associated with strength training, none of the intervention groups (Off-bike and On-bike) experienced a significant increase in body mass, lean mass or injury incidence. On-bike strength training emerges as an effective, efficient and safe alternative to develop the adaptations associated with the specific performance of well-trained cyclists.
This Doctoral Thesis validates a novel procedure for the evaluation of the Load - Cadence (Force - Velocity) profile and the determination of the maximum absolute dynamic force (FDMa) in the pedaling gesture itself. In particular, an algorithm is identified to estimate faithfully (R2 = 0.978; SEE = 9 rpm) the magnitude of relative pedaling load (% FDMa) produced during an all-out effort according to the cadence reached. Our findings show a high test-retest reliability of this Force - Pedaling speed profile, as well as a high stability to changes in the cyclist's sport performance (after 10 weeks of intervention), or even when comparing different levels of cyclists' FDMa. This new procedure allows to monitor the changes induced by training in different zones of the Force - Pedaling speed curve. Likewise, this Doctoral Thesis identified the relative resistance (%FDMa) faced by a cyclist during the efforts he/she usually develops in competition and training (including torque training), taking as reference the main intensity domains of the aerobic (aerobic threshold - VT1, maximum steady state - MLSS, anaerobic threshold - VT2, maximum aerobic power - MAP) and anaerobic (anaerobic capacity and anaerobic power) pathways. The results allowed to clarify that the relative demands of pedaling force in a wide spectrum of metabolic intensities can be considered in general low or very low, even in the so-called “torque training” (<54 % of FDMa), intensities substantially lower than those necessary to produce neuromuscular and morphofunctional adaptations in experienced athletes (>60 %FDMa). Finally, a group of 37 well-trained cyclists (average VO2max of 62 ml-kg-1-min-1) who maintained the same total volume and zones of pedaling training (average of 10.7 h per week), were randomly and counterbalanced way assigned into 3 intervention groups: i) strength training on the Squat exercise (Off-bike RT); ii) strength training on the bicycle itself using a novel procedure original to this PhD Thesis (On-bike RT); and iii) no strength training (Control). For 10 weeks, the two strength intervention groups (Off-bike and On-bike) implemented an identical strength training program in all load components: weekly frequency (2 sessions per week), number of sets (5 sets per session), recoveries between sets (4 min), rest between sessions (72 h), intra-set volume or degree of effort in the set (7 repetitions or 7 pedal cycles, respectively) and intensity (70% 1 repetition maximum [RM] in full squat and 70% pedal FDMa, respectively). Therefore, the preparation of both strength training groups differed only in the exercise used to implement the strength stimulus. Through a complete battery of assessment tests it was evidenced that, while the control group experienced decreases or maintenance of their neuromuscular and specific performance, both strength training groups (Off-bike and On-bike) developed substantial improvements in MAP (ES = 0. 37 - 0.54), VT1-VT2 (ES = 0.20 - 0.27), anaerobic capacity and power (ES = 0.20 - 0.37), time to exhaustion at VT2 (ES = 0.30 - 0.33), as well as on FDMa developed in the Squat exercise and the pedaling exercise itself (ES =0.16 - 0.86). In relation to the adverse or secondary effects associated with strength training, none of the intervention groups (Off-bike and On-bike) experienced a significant increase in body mass, lean mass or injury incidence. On-bike strength training emerges as an effective, efficient and safe alternative to develop the adaptations associated with the specific performance of well-trained cyclists.
publication.page.subject
Citation
item.page.embargo
Collections
Ir a Estadísticas
Este ítem está sujeto a una licencia Creative Commons. CC BY 4.0



