Publication:
Cyclodextrins increase triterpene production in Solanum lycopersicum cell cultures by activating biosynthetic genes

dc.contributor.authorSabater Jara, Ana Belén
dc.contributor.authorMarín Marín, María Jesús
dc.contributor.authorAlmagro, Lorena
dc.contributor.authorPedreño, María Angeles
dc.contributor.departmentBiología Vegetal
dc.date.accessioned2025-05-16T12:03:46Z
dc.date.available2025-05-16T12:03:46Z
dc.date.issued2022-10-20
dc.description© 2022 by the authors. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published Manuscript version of a Published Work that appeared in final form in Plants. To access the final edited and published work see https://doi.org/10.3390/plants11202782
dc.description.abstractIn this work, Solanum lycopersicum cv. Micro-Tom suspension-cultured cells were used to analyze the effect of different elicitors including β-cyclodextrins (CD), methyl jasmonate (MJ), β-glucan (Glu) and 3-hexenol (Hex) separately and the combined treatments of CD + MJ, CD + glu and CD + Hex on triterpene compound production after 24, 72 and 96 h. Moreover, we studied the changes induced by elicitors in the expression of key biosynthetic genes to elucidate the regulation of the triterpene biosynthetic pathway. The relative abundance of the triterpene compounds identified in the extracellular medium after elicitation (squalene, fucosterol, avenasterol, β-sitosterol, cycloartenol and taraxasterol) was determined by gas chromatography coupled to mass spectrometry, and the expression level of genes in treated-cells was analyzed by real-time quantitative polymerase chain reaction (qRT-PCR). Results showed that, in CD-treated cells (CD, CD + MJ, CD + Glu, CD + Hex), specialized metabolites were accumulated mainly in the extracellular medium after 72 h of elicitation. Moreover, qRT-PCR analysis revealed that the highest triterpene levels in CD-treated cells (CD, CD + MJ, CD + Glu, CD + Hex) were highly correlated with the expression of cycloartenol synthase, 3-hydroxy-3-methylglutaryl-CoA reductase and squalene epoxidase genes at 24 h of treatment, whereas the expression of sterol methyltransferase was increased at 72 h. According to our findings, CD acts as a true elicitor of triterpene biosynthesis and can promote the release of bioactive compounds from the tomato cells into the extracellular medium. The results obtained provide new insights into the regulation of the triterpene metabolic pathway, which might be useful for implementing metabolic engineering techniques in tomato.
dc.formatapplication/pdfes
dc.format.extent10
dc.identifier.doihttps://doi.org/ 10.3390/plants11202782
dc.identifier.eisbnPlants, 2022, Vol. 11 (20) : 2782
dc.identifier.issnElectronic: 2223-7747
dc.identifier.urihttp://hdl.handle.net/10201/154785
dc.languageenges
dc.publisherMDPI
dc.relationMinisterio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033 “Una manera de hacer Europa”) PID2020-113438RB-I00es
dc.relation.publisherversionhttps://www.mdpi.com/2223-7747/11/20/2782
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCyclodextrins
dc.subjectElicitation
dc.subjectGene expression
dc.subjectSolanum lycopersicum cell cultures
dc.subjectTriterpenes
dc.titleCyclodextrins increase triterpene production in Solanum lycopersicum cell cultures by activating biosynthetic geneses
dc.typeinfo:eu-repo/semantics/articlees
dspace.entity.typePublicationes
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022_Sabater-Jara_Cyclodextrins increase triterpene production in Solanum cell culture.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.26 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections