Histology and histopathology Vol.30, nº8 (2015)
Ir a Estadísticas
Permanent URI for this collection
Browse
Recent Submissions
- PublicationOpen AccessNovel features of neurodegeneration in the inner retina of early diabetic rats(F. Hernández y Juan F. Madrid. Universidad de Murcia: Departamento de Biología Celular e Histología, 2015) Énzsöly, Anna; Szabó, Arnold; Szabó, Klaudia; Szél, Ágoston; Németh, János; Lukáts, ÁkosThe literature indicates that in diabetes retinal dysfunctions related to neural retinal alterations exist prior to clinically detectable vasculopathy. In a previous report, a detailed description about the alteration of the outer retina was given, where diabetic degeneration preceded apoptotic loss of cells (Enzsöly et al., 2014). Here, we investigated the histopathology of the inner retina in early diabetes using the same specimens. We examined rat retinas with immunohistochemistry and Western blotting, 12 weeks after streptozotocin induction of diabetes. Glial reactivity was observed in all diabetic retinal specimens; however, it was not detectable all over the retina, but appeared in randomly arranged patches, with little or no glia activation in between. Similarly, immunoreactivity of parvalbumin (staining mostly AII amacrine cells) was also decreased only in some regions. We propose that these focal changes appear prior to affecting the whole retina and overt loss of cells. In contrast to these, most other markers used (calretinin, recoverin, tyrosin hydroxylase anti-Brn-3a and also calbindin in the optic part of the retina) did not show any major alterations in the intensity of immunoreactivity or in the number of stained elements. Interestingly, under diabetic conditions, the labeling pattern of PKC-α and calbindin in the ciliary retina showed a clear resemblance to the pattern described during development. This observation is in line with our previous study, reporting an increase in the number of dual cones, coexpressing two photopigments, which is another common feature with developing retinas. These data may indicate a previously uninvestigated regenerative capacity in diabetic retina
- PublicationOpen AccessMight the Masson trichrome stain be considered a useful method for categorizing experimental tendon lesions?(F. Hernández y Juan F. Madrid. Universidad de Murcia: Departamento de Biología Celular e Histología, 2015) Martinello, Tiziana; Pascoli, Francesco; Caporale, Giovanni; Perazzi, Anna; Iacopetti, Ilaria; Patruno, MarcoStrain injuries of tendons are the most common orthopedic injuries in athletic subjects, be they equine or human. When the tendon is suddenly damaged, an acute inflammatory phase occurs whereas its repetitive overloading may cause chronic injuries. Currently the criteria used for grading injuries are general and subjective, and therefore a reliable grading method would be an improvement. The main purpose of this study was to assess qualitatively the histological pattern of Masson trichrome stain in healthy and injured tendons; indeed, the known “paradox” of Masson staining was used to create an evaluation for the matrix of tendons, following experimental lesions and natural repair processes. A statistically significant difference of aniline-staining between healthy and lesioned tendons was observed. Overall, we think that the Masson staining might be regarded as an informative tool in discerning the collagen spatial arrangement and therefore the histological characteristics of tendons.
- PublicationOpen AccessN-Cadherin, ADAM-10 and Aquaporin 1 expression in lung tissue exposed to fluoroedenite fibers: an immunohistochemical study(F. Hernández y Juan F. Madrid. Universidad de Murcia: Departamento de Biología Celular e Histología, 2015) Musumeci, Giuseppe; Loreto, Carla; Szychlinska, Marta Anna; Imbesi, Rosa; Rapisarda, Venerando; Aiello, Flavia Concetta; Castorina, Sergio; Castrogiovanni, PaolaFluoro-edenite (FE) fibers are similar to other amphibole asbestos fibers. The scientific relevance of FE is due to its ability to lead to chronic inflammation and carcinogenesis in lung tissue shown after its inhalation. These fibers stimulate aberrant host cell proliferation and induce the release of cytokines, growth factors, reactive oxygen and nitrite species, which results in DNA damage. In previous studies, we showed that FE induces functional modifications in sheep and human lung fibroblasts and alveolar epithelial cells, where the overexpression of several molecules probably involved in pathological cellular mechanisms induced by FE exposition have been detected. However, the mechanisms of cellular and molecular toxicity and the cellular response to FE fibers are still not well known. N-cadherin, ADAM-10 and AQP1 are molecules involved in carcinogenesis and in inflammatory process. In this study we analyzed, through immunohistochemistry, their expression in the lung tissue of sheep exposed to FE. Our results showed different patterns of immunolabeling for N-cadherin, ADAM-10 and AQP1. N-cadherin and ADAM-10 were more expressed in FE exposed lung tissue, when compared with the control. On the contrary, AQP1 was more expressed in non exposed lung tissue. These results suggest that NCadherin, ADAM-10 and AQP1 are probably involved in different pathological processes induced by FE fiber exposition. The aim of the study was to better understand the mechanisms of cellular and molecular toxicity and of cellular response to FE fibers in order to identify, in the future, a possible therapeutic intervention in cases of FE-associated pathogenesis.
- PublicationOpen AccessThe role of oxidative stress in corneal diseases and injuries(F. Hernández y Juan F. Madrid. Universidad de Murcia: Departamento de Biología Celular e Histología, 2015) Čejková, J.; Čejka, ČIn various corneal injuries (such as chemical burns or irradiation of corneas with UVB radiation) and ocular diseases (e.g. dry eye disease, keratokonus, bullous keratopathy, Fuchs’ endothelial dystrophy), the expressions of malondialdehyde (a marker of lipid peroxidation) and nitrotyrosine (a marker of oxidative stress) appeared in cells of individual corneal layers and conjunctival cells (dry eye disease). This is in contrast to healthy corneas in which negligible levels of malondialdehyde and no expressions of nitrotyrosine are present. The injured or diseased corneas reveal decreased capacity of antioxidants (enzymatic as well as non-enzymatic), whereas the levels of pro-oxidants (e.g. oxidases that generate reactive oxygen species) remain at physiological levels or even increase, leading to the antioxidant/prooxidant imbalance and oxidative stress. Oxidative stress in the cornea stimulates generation of pro-inflammatory cytokines, proteolytic enzymes and enzymes that generate nitric oxide (nitric oxide synthases). An abundant amout of reactive oxygen species and nitric oxide lead to the formation of toxic reactive products contributing to tissue damage. This review aims to summarize immunohistochemical changes in severe corneal injuries and diseases in which oxidative stress has been proved.
- PublicationOpen AccessA novel proteotoxic stress associated mechanism for macular corneal dystrophy(F. Hernández y Juan F. Madrid. Universidad de Murcia: Departamento de Biología Celular e Histología, 2015) Kaarniranta, Kai; Szalai, Eszter; Smedowski, Adrian; Hegy, Zoltán; Kivinen, Niko; Viiri, Johanna; Wowra, Bogumil; Dobrowolski, Dariusz; Módis Jr, László; Berta, András; Wylegala, Edgar; Felszeghy, SzabolcsMacular corneal dystrophy is a rare autosomal recessive eye disease affecting primarily the corneal stroma. Abnormal accumulation of proteoglycan aggregates has been observed intra- and extracellularly in the stromal layer. In addition to the stromal keratocytes and corneal lamellae, deposits are also present in the basal epithelial cells, endothelial cells and Descemet's membrane. Misfolding of proteins has a tendency to gather into aggregating deposits. We studied interaction of molecular chaperones and proteasomal clearance in macular dystrophy human samples and in human corneal HCE-2 epithelial cells. Seven cases of macular corneal dystrophy and four normal corneal buttons collected during corneal transplantation were examined for their expression patterns of heat shock protein 70, ubiquitin protein conjugates and SQSTM1/p62. In response to proteasome inhibition the same proteins were analyzed by western blotting. Slitlamp examination, in vivo confocal cornea microscopy and transmission electron microscopy were used for morphological analyses. Heat shock protein 70, ubiquitin protein conjugates and SQSTM1/p62 were upregulated in both the basal corneal epithelial cells and the stromal keratocytes in macular corneal dystrophy samples that coincided with an increased expression of the same molecules under proteasome inhibition in the HCE-2 cells in vitro. We propose a novel regulatory mechanism that connects the molecular chaperone and proteasomal clearance system in the pathogenesis of macular corneal dystrophy.
- «
- 1 (current)
- 2
- 3
- »