Person: Víllora Cano, Gloria
Loading...
Name
Víllora Cano, Gloria
publication.page.department
Universidad de Murcia. Departamento de Ingeniería Química
- Publications
- item.page.relationships.isSecondaryAuthorOfPublication
- item.page.relationships.isDirectorOfPublication
Search Results
Now showing 1 - 2 of 2
- PublicationOpen AccessAggregation behaviour of gold nanoparticles in presence of chitosan(Springer, 2015-06-13) Fernández Espín, Vanesa ; Pamies, Ramón ; García de la Torre, José; García Montalbán, Mercedes; collado; Collado-González, Mar; Hernández Cifre, José Ginés; Díaz Baños, F. Guillermo; Víllora Cano, Gloria; Ingeniería QuímicaChitosan (CS) is a biocompatible polysaccharide with positive charge that is widely used as a coating agent for negatively charged nanoparticles. However, the types of structures that emerge by combining CS and anoparticles as well as their behaviour are still poorly understood. In this work, we characterize the nanocomposites formed by gold nanoparticles (AuNPs) and CS and study the influence of CS in the expected aggregation process that should experience those nanoparticles under the favourable conditions of low pH and high ionic strength. Thus, at the working CS concentration, we observe the existence of CS structures that quickly trap the AuNPs and avoid the formation of nanoparticle aggregates in environmental conditions that, otherwise, would lead to such an aggregation.
- PublicationOpen AccessChitosan as stabilizing agent for negatively charged nanoparticles(Elsevier, 2016-12-24) Collado-González, Mar; García Montalbán, Mercedes; Peña-García, Jorge; Pérez-Sánchez, Horacio; Víllora Cano, Gloria; Díaz Baños, F. Guillermo; Biología Celular e HistologíaChitosan is a biocompatible polysaccharide with positive Z potential which can stabilize negative charged nanoparticles. Silk fibroin nanoparticles and citrate gold nanoparticles, both with negative Z potential, but they form aggregates at physiological ionic strength. In this work, we study the behavior of chitosan in solution when the ionic strength of the medium is increased and how the concentration of chitosan and the proportion of the two components (chitosan and AuNP or SFN) significantly affect the stability and size of the nanocomposites formed. In addition to experimental measurements, molecular modeling were used to gain insight into how chitosan interacts with silk fibroin monomers, and to identify the main energetic interactions involved in the process. The optimum values for obtaining the smallest and most homogeneous stable nanocomposites were obtained and two different ways of organization through which chitosan may exert its stabilizing effect were suggested.
Ir a Estadísticas
Sin licencia Creative Commons.





