Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1515/jib-2024-0049


Título: | Automated mitosis detection in stained histopathological images using Faster R-CNN and stain techniques |
Fecha de publicación: | 11-jun-2025 |
Editorial: | De Gruyter |
Cita bibliográfica: | Journal of Integrative Bioinformatics 2025; 20240049 |
ISSN: | Electronic: 1613-4516 |
Palabras clave: | Artificial Intelligence Cancer MIDOG Challenge Object detection Tumor prognosis |
Resumen: | Accurate mitosis detection is essential for cancer diagnosis and treatment. Traditional manual counting by pathologists is time-consuming and may cause errors. This research investigates automated mitosis detection in stained histopathological images using Deep Learning (DL) techniques, particularly object detection models. We propose a two-stage object detection model based on Faster R-CNN to effectively detect mitosis within histopathological images. The stain augmentation and normalization techniques are also applied to address the significant challenge of domain shift in histopathological image analysis. The experiments are conducted using the MIDOG++ dataset, the most recent dataset from the MIDOG challenge. This research builds on our previous work, in which two one-stage frameworks, in particular on RetinaNet using fastai and PyTorch, are proposed. Our results indicate favorable F1-scores across various scenarios and tumor types, demonstrating the effectiveness of the object detection models. In addition, Faster R-CNN with stain techniques provides the most accurate and reliable mitosis detection, while RetinaNet models exhibit faster performance. Our results highlight the importance of handling domain shifts and the number of mitotic figures for robust diagnostic tools. |
Autor/es principal/es: | García-Salmerón, Jesús García, José Manuel Bernabé, Gregorio González Férez, Pilar |
Versión del editor: | https://www.degruyterbrill.com/document/doi/10.1515/jib-2024-0049/html |
URI: | http://hdl.handle.net/10201/155804 |
DOI: | https://doi.org/10.1515/jib-2024-0049 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 15 |
Derechos: | info:eu-repo/semantics/openAccess Atribución 4.0 Internacional |
Descripción: | © 2025 the author(s). This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/. This document is the Published version of a Published Work that appeared in final form in Journal of Integrative Bioinformatics. To access the final edited and published work see https://doi.org/10.1515/jib-2024-0049 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
10.1515_jib-2024-0049.pdf | 2,05 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons