Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1515/jib-2024-0049

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorGarcía-Salmerón, Jesús-
dc.contributor.authorGarcía, José Manuel-
dc.contributor.authorBernabé, Gregorio-
dc.contributor.authorGonzález Férez, Pilar-
dc.date.accessioned2025-06-11T12:03:31Z-
dc.date.available2025-06-11T12:03:31Z-
dc.date.issued2025-06-11-
dc.identifier.citationJournal of Integrative Bioinformatics 2025; 20240049-
dc.identifier.issnElectronic: 1613-4516-
dc.identifier.urihttp://hdl.handle.net/10201/155804-
dc.description© 2025 the author(s). This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/. This document is the Published version of a Published Work that appeared in final form in Journal of Integrative Bioinformatics. To access the final edited and published work see https://doi.org/10.1515/jib-2024-0049-
dc.description.abstractAccurate mitosis detection is essential for cancer diagnosis and treatment. Traditional manual counting by pathologists is time-consuming and may cause errors. This research investigates automated mitosis detection in stained histopathological images using Deep Learning (DL) techniques, particularly object detection models. We propose a two-stage object detection model based on Faster R-CNN to effectively detect mitosis within histopathological images. The stain augmentation and normalization techniques are also applied to address the significant challenge of domain shift in histopathological image analysis. The experiments are conducted using the MIDOG++ dataset, the most recent dataset from the MIDOG challenge. This research builds on our previous work, in which two one-stage frameworks, in particular on RetinaNet using fastai and PyTorch, are proposed. Our results indicate favorable F1-scores across various scenarios and tumor types, demonstrating the effectiveness of the object detection models. In addition, Faster R-CNN with stain techniques provides the most accurate and reliable mitosis detection, while RetinaNet models exhibit faster performance. Our results highlight the importance of handling domain shifts and the number of mitotic figures for robust diagnostic tools.es
dc.formatapplication/pdfes
dc.format.extent15es
dc.languageenges
dc.publisherDe Gruyter-
dc.relationÁmbito: Proyecto nacional. Financiador: Agencia Estatal de Investigación. Convocatoria: Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital. Nombre: Aplicación de la Computación Eficiente de Alto Rendimiento con Técnicas Avanzadas de Inteligencia Artificial para el Diagnóstico de Enfermedades en Sistemas Heterogéneos. This work has been partially funded by Grant TED2021-129221B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectArtificial Intelligencees
dc.subjectCanceres
dc.subjectMIDOG Challengees
dc.subjectObject detectiones
dc.subjectTumor prognosises
dc.titleAutomated mitosis detection in stained histopathological images using Faster R-CNN and stain techniqueses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.degruyterbrill.com/document/doi/10.1515/jib-2024-0049/htmles
dc.identifier.doihttps://doi.org/10.1515/jib-2024-0049-
dc.contributor.departmentDepartamento de Ingeniería y Tecnología de Computadoreses
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
10.1515_jib-2024-0049.pdf2,05 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons