
Journal of Integrative Bioinformatics 2025; 20240049

Workshop

Jesús García-Salmerón*, José Manuel García, Gregorio Bernabé and Pilar González-Férez

Automated mitosis detection in stained
histopathological images using Faster R-CNN
and stain techniques

https://doi.org/10.1515/jib-2024-0049

Received October 18, 2024; accepted April 24, 2025; published online June 11, 2025

Abstract: Accurate mitosis detection is essential for cancer diagnosis and treatment. Traditional manual count-

ing by pathologists is time-consuming and may cause errors. This research investigates automated mitosis

detection in stained histopathological images using Deep Learning (DL) techniques, particularly object detection

models.Wepropose a two-stage object detectionmodel based on Faster R-CNN to effectively detectmitosiswithin

histopathological images. The stain augmentation and normalization techniques are also applied to address the

significant challenge of domain shift in histopathological image analysis. The experiments are conducted using

the MIDOG++ dataset, the most recent dataset from theMIDOG challenge. This research builds on our previous

work, in which two one-stage frameworks, in particular on RetinaNet using fastai and PyTorch, are proposed.

Our results indicate favorable F1-scores across various scenarios and tumor types, demonstrating the effective-

ness of the object detection models. In addition, Faster R-CNN with stain techniques provides the most accurate

and reliable mitosis detection, while RetinaNet models exhibit faster performance. Our results highlight the

importance of handling domain shifts and the number of mitotic figures for robust diagnostic tools.
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1 Introduction

The incidence of cancer is rising significantly and has become a major global health concern because of its

severe and lasting effects on individuals and society. Histopathological analysis, a fundamental element of can-

cer diagnosis, is essential for detecting tumors and developing effective treatment plans. During the examination

of histopathological images, recognizing mitosis is a crucial task for evaluating cancer and forecasting its pro-

gression. Currently, skilled pathologists perform this task manually by examining Hematoxylin and Eosin (H&E)

stained tissue sections under amicroscope. However, this traditionalmethod is time-consuming, prone to errors,

and exhibits significant variability between observers [1].

In recent years, variousMachine Learning (ML) techniques have advanced and gainedpopularity in thefield

of histopathology, with one prominent approach being Deep Learning (DL). This method has experienced rapid

advancements, with the development of techniques that rival or even surpass human experts in certain tasks.
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The incorporation of these techniques into computer-aided diagnostics brings notable advantages, such as the

optimization of tasks with significant observer variability that increases diagnostic reliability and minimizing

bias [2]. It also benefits for routine quantitative tasks, allowing for a more efficient diagnostic process [2]. These

benefits underscore the growing need for mitosis detection methods automatized with DL.

A vital factor in accelerating diagnoses and ensuring accurate grading is the implementation of automated

mitosis detection methods. These techniques facilitate the development of personalized treatment plans and

have the potential to reduce cancer mortality rates. By improving accuracy, automated detection reduces the

tediousness of manual counting, while also offering additional advantages, such as independent mitotic activity

scoring and aiding pathologists in pinpointing areas with the highest levels of mitotic activity [1, 3].

Deep Learning methods for image analysis can encounter a significant challenge, their performance may

deterioratewhen there is a discrepancy between the visual representation of training images and testing images.

This issue, known as domain shift, poses difficulties in histopathology due to variations in staining techniques,

imaging devices, and tumor types. Humans can adjust to these variations, whereas Machine Learning models

often find it difficult to adapt.

To address the problem of domain shift, the MItosis DOmain Generalization (MIDOG) 2021 challenge was

established. The MIDOG challenge is designed to tackle the domain shift caused by variations in Whole Slide

Image (WSI) scanners, which can significantly alter colour representation that is essential for detecting mitotic

figures. Through participation in this challenge, researchers seek to improve the adaptability of automated

mitosis detection methods across various environments, thereby increasing their effectiveness in diagnostic

applications [2]. Due to the popularity and impact of the MIDOG 2021 challenge and the interest in other tumor

types, the MIDOG 2022 challenge [4] emerged. MIDOG 2022 is an enhancement of MIDOG 2021 by including new

tumor type and 405 training images. Afterwards, theMIDOG 2022 challengewas extended, leading to the creation

ofMIDOG++, which is the latest development from theMIDOGchallenge. This newdataset contains 503 histolog-

ical images from seven different tumor types with varying morphologies. A detailed explanation of MIDOG++
dataset is provided in Section 3.1 since we use this dataset in our work.

In our previous work [5], we replicate and validate MIDOG++ work with RetinaNet using fastai and also

propose a RetinaNet model using PyTorch. Results for this former work prove the effectiveness of one-stage

object detection models, such as RetinaNet, in mitosis detection within histopathological images.

Since one-stage object detection models are less accurate but more efficient compared to two-stage models

[6], we want to analyze the behavior and performance of a two-stage object detection model in mitosis detec-

tion within MIDOG++ dataset. Results could show that a two-stage model is suitable for tasks requiring precise

detection when time is not critical. In particular, we choose Faster R-CNN as two-stage model because it demon-

strates the best performance within the R-CNN family and represents the latest iteration of this architecture.

Faster R-CNN builds upon the strengths of its predecessors, R-CNN and Fast R-CNN, by integrating the Region

Proposal Network (RPN) directly into the mode [7].

In addition, wewant to addressDomain Shift (DS), since it is considered a challenge for themedical analysis

research community, specially for the computational pathology community. Domain shift arises when discrep-

ancies exist in data distribution between the source and target domains. These variations complicates the direct

application of trained models to previously unseen data. The problem is that histopathological images usu-

ally can come from different sources, such as scanners or hospital, or even different in staining protocols, and

images may have significant variability among them. In order to tackle this issue, in this work we apply stain

normalization and stain augmentation technique to our proposed model.

Therefore, this current research, that extends our previouswork [5], has twomain objectives: first, to imple-

ment a two-stage object detection model, and second, to apply innovative techniques to tackle the challenge of

domain shift in this field.

Results show that our two-stage object detection model based on Faster R-CNN usually achieves superior

F1-scores and detection accuracy than our previous one-stage models, although our one-stage models show bet-

ter Average Precision (AP) and faster inference times. In addition, the use of stain techniques improve model

generalization across different tumor types but increased training times. Therefore, Faster R-CNN model with

stain techniques provides the best accuracy.
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2 Related work

In this section, we firstly outline the mitosis detection techniques, and then the specifics of the object detection

models, and finally the techniques for addressing domain shift.

2.1 Mitosis detection techniques

The mitosis detection methodologies can be classified into three categories [1]. The first one, called handcrafted

features methods extracts manually features from data and trains Machine Learning algorithms to recognize

or classify patterns. Initially, the input image is processed to detect candidate cells or nuclei. Then, there is a

feature extraction stage. Finally, there is a extraction and classification stage for the candidate cells. This stage

generally uses standard algorithms such as Support Vector Machines (SVM), Random Forest (RF), Linear Discrim-

inant Analysis (LDA) orMulti Layer Perceptron (MLP). These algorithms classify the candidate cells into mitotic

cell or non-mitotic cell, thus completing the mitosis detection process [1].

The secondmethod is based onDeepLearning. Nowadays, Deep Learningmethods have become extensively

used in medical systems for image-processing tasks, including mitosis detection, cell nucleus segmentation and

tissue classification. Detectionmethods based onDL exploits the abilities of neural network self-learning to auto-

matically extract features and train features. To tackle the challenges of mitosis detection, methods that utilize

Deep Convolutional Neural Network (DCNN) are commonly employed due to their effectiveness in achieving

accurate results [1, 8]. Approaches based on Convolutional Neural Network (CNN) are also particularly notable

in this regard. CNN-based methods are widely used in medical image analysis as they improve computer vision

tasks, including image classification [9], object detection [7, 10], semantic segmentation [11] and instance seg-

mentation [12]. In our research, we employ Deep Learning models, specifically CNN-based methods, to tackle

challenges in mitosis detection and improve medical image analysis, with a focus on object detection.

The third one is a combination of both methods. Methodologies for mitosis detection utilize either layered

handcrafted features or features extracted through CNNs. Nevertheless, using only handcrafted features results

in low detection accuracy, while CNN-based techniques are limited by their computational complexity [13]. The

integration of both methodologies can potentially enhance the overall performance of the mitosis detection

system.

2.2 Object detection models

Object detection is a task within computer vision that involves identifying objects in an image by determining

both their category and location. This process not only classifies the objects but also predicts their position using

bounding boxes [14]. As a result, the aim of object detection is twofold: locating objects in the image (object

localization) and assigning them to the correct category (object classification).

Recently, there has been growing interest in object detection tasks, particularly within the field of

histopathology [15] and mitosis detection [8, 16]. The models are generally divided into two main categories:

one-stage and two-stage approaches. In general terms, two-stagemodels typically achieve superior accuracy but

demand higher computational resources compared to one-stage models. The accuracy-computational trade-off

is heavily influenced by the choice of the backbone network and the hyperparameter configuration [17].

DCNN are the backbone network for object detection models. To improve feature representation perfor-

mance continue, network architectures become increasingly complex, with deeper layers andmore parameters.

Consequently, networks known as Complex Backbone Network (CBN) has been proposed. However, in environ-

ments with limited computing power and storage, Lightweight Backbone Network (LBN) structures are used to

simplify the network structure without compromising accuracy [6].

In addition, to enhance accuracy, the depth of Complex BackboneNetworks has been increased. Some exam-

ples are VGGNet [18], GoogLeNet [19] and ResNet [9]. All of this DCNN came up after the success of AlexNet [20],

known as the first CNN.
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One-stage models perform region proposal and classification in a single stage. A single feed-forward fully

CNN directly outputs both the bounding boxes and the object classification. RetinaNet and You Only Look Once

(YOLO) [21] are examples of these models.

Two-stage frameworks split the detection process into two stages: region proposal and classification. Firstly,

these models utilize reference boxes known as anchors and generate multiple object candidates, referred to

as Region of Interest (RoI). Subsequently, the proposed regions are classified, and their localization is refined.

Examples of the two-stage approaches most commonly used are R-CNN (Region-based Convolutional Neural

Network), Fast R-CNN, Faster R-CNN and Cascade R-CNN [14].

Since we are using Faster R-CNN, we explain this model in more detail. Faster R-CNN consists of a single

and unified network for object detection, its consists of two modules. The first module is a DCNN that proposes

regions and the second module is the Fast R-CNN detector [22] that uses the proposed regions. Faster R-CNN uti-

lizes the recently popular terminology of neural networkswith “attention” [23]mechanisms, the Region Proposal

Network module tells the Fast R-CNN module where to look.

Furthermore, other studies have demonstrated the efficiency of Faster R-CNN for mitosis detection in

histopathological images [16, 24, 25]. Focusing on how this model performs detection on various datasets dif-

ferent from the one we will use, and how stain techniques enhance the model’s performance. However, our

study employs a novel and more complex dataset, along with a different staining technique implementation, to

address the domain shift problem in the dataset.

2.3 Techniques for addressing domain shift

DS is considered a challenge for the computational pathology community. Domain shift occurs when there are

discrepancies in data distribution between the source and target domains, making the direct applicability of

trained models to unseen data difficult. Deep Learning models in computational pathology have demonstrated

vulnerability to domain shift, as well as typical corruptions and perturbations [26, 27].

Among all the domain generalization methods developed, in this work we apply stain normalization and

stain augmentation. Stain normalization serves as a preprocessing stage, this method aims to correct incon-

sistencies in the colours of histological images resulting from different staining procedures and differences

between scanners [28]. Stain augmentation methods aim to generate new images to enhance robustness to

colour variations, under the assumption that objects of interests are invariant to changes in colour intensity

and illumination [29]. Various studies [29–31] have shown that stain techniques effectively address the domain

shift problem, and that applying stain augmentation after stain normalization achieves better results than using

stain normalization alone.

3 Design and implementation

In this research, we have two main objectives. The first one is to develop a two-stage object detection model,

specifically Faster R-CNN. The second is to explore and implement novel image processing techniques aimed

at addressing the issue of domain shift, a common challenge in medical imaging. The code we developed is

available at: https://github.com/jesussgs/faster-midog-plus.

3.1 Dataset

In our experiments, we utilize the MIDOG++ dataset [32], the most recent dataset from the original MIDOG

challenge [2]. MIDOG++ expands the MIDOG dataset with the addition of new images and/or annotations for

more cases, and two additional tumor types: canine soft tissue sarcoma and humanmelanoma. Figure 1 presents

examples of mitotic figures from this extended dataset.

MIDOG++ stands out by providing images across a diverse array of domains, with a strong focus on various

tumor types. In fact, this is the first dataset that encompasses multiple sources of domain shifts that are crucial

for pathological diagnosis [32].

https://github.com/jesussgs/faster-midog-plus
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Figure 1: Mitotic figures candidates from all domains [32]. Note that h stands for human, c for canine, carci for carcinoma, t for tumor,

cut for cutaneous and sarc for sarcoma.

The MIDOG++ dataset includes region-of-interest images from 503 histological specimens representing

seven distinct tumor types with diversemorphologies: breast carcinoma, lung carcinoma, lymphosarcoma, neu-

roendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma.

Both human and canine samples were processed and stained at various human and veterinary pathology labo-

ratories using standard Hematoxylin and Eosin (H&E) staining. The images were digitized by one of five whole

slide scanners, each at either 0.23 μm/px or 0.25 μm/px resolution. The dataset contains labels for 11,937 mitotic
figures, which were distinguished from 14,351 imposter cells. The labeling process involved a blinded consensus

by two pathologists, with a final review by a third pathologist for any disagreements [32].

3.2 Implementation of Faster R-CNN

In order to compare our previous results developed with one-stage models [5], here we implement a two-stage

object detection model, namely Faster Region-based Convolutional Neural Network (Faster R-CNN). We choose

Faster R-CNN since it is a widely-used in other studies related to mitosis detection [16, 33, 34]. Two-stage mod-

els generally achieve higher confidence predictions and better results compared to one-stage models, but they

come with significantly higher computational costs and time-complexity during training and inference. For the

implementation of Faster R-CNN we use PyTorch due to its widespread use and scalability.

The experiments are conducted across two distinct domains: single-domain and leave-one-out. The single-

domain approach trains the model on a single tumor type and evaluates it across all tumor types. In the leave-

one-out approach, the model is trained on all tumor types except one and then it is evaluated on all tumor

types.

We adapt the training and evaluation procedure to use PyTorch for the utilization of Faster R-CNN model.

This training process involves adapting the code from the fastai framework to PyTorch, integrating additional

libraries such as Albumentations to ensure precise data transformations, and adding custom classes and ele-

ments to facilitate an effective training stage. Our proposed Faster R-CNNmodel also undergoes fine-tuning and

utilizes a ResNet-50-FPN backbone. In particular, ourmodel represents an improved version of the conventional

pretrained Faster R-CNN model. Note that using a denser backbone offers benefits like improved precision and

generalization but comes with drawbacks such as longer training times and higher computational costs.

For the evaluation stage, we adjust the process to rely solely on the PyTorch framework and revised the

implementation of Non-Maximum Suppression (NMS). The results are primarily evaluated using the F1-score,

the key metric in the MIDOG challenge.
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F1 = 2 × precision × recall

precision+ recall
= 2 × TP

2 × TP + FP + FN
(1)

The F1-score has range [0,1] and is calculated using Equation (1), where TP represents true positives, FP are

false positives and FN are false negatives.

3.3 Applying stain augmentation and normalization techniques

In order to tackle the domain shift in the MIDOG++ [32] dataset, we apply stain normalization and stain aug-

mentation technique to our proposed model. We select them due to two main factors. First, stain normalization

helps to standardize the variability in visual features, allowing themodels to become less sensitive to these incon-

sistencies and focus on more critical image characteristics. Second, stain augmentation expands the dataset by

introducing variations in colour intensity and staining patterns, enhancing the models’ robustness to unseen

variations in new domains. We rely on existing implementations of these stain techniques [30, 35] and are not

introducing any new methods.

Stain normalization technique addresses stain variation in digital pathology, including theMIDOGchallenge

[2]. The Vahadane stain normalization method is commonly used since it preserves the structural properties

of stained tissue samples and it is robust to stain sparsity in pathology images. Additionally, Vahadane stain

normalization has been shown to be superior to other state-of-the-art methods [28].

Vahadane stain normalization employs Sparse Non-negative Matrix Factorization (SNMF) to estimate the

stainmatrix (S) and concentrationmatrix (C) fromboth source and target images. It then scales the concentration

map of the source image and combines it with the stainmatrix of the target image to achieve normalization [30].

Our model is enhanced by incorporating stain augmentation in training, that involves randomly altering

the concentration of H&E stains in the source image. Using the SNMF algorithm, we first extract the source stain

matrix (S) and concentration matrix (C). We then scale and shift the stain concentrations, and finally convert

the modified stain information back to RGB space, resulting in an augmented image, denoted as Î [36].

̂I = I0 exp(−S(𝛼C + 𝛽 )) (2)

The augmented image Î is created according to Equation (2), where I0 represents the incident intensity

of the light source derived from the source image I. Here, 𝛼 ∼ U(0.75, 1.25) and 𝛽 ∼ U(−0.2, 0.2) are the stain
concentration scale and shift factors, respectively, which are randomly selected from uniform distributions [36].

We perform stain normalization and stain augmentation simultaneously by setting the S matrix in

Equation (2) to a pre-extracted target stain matrix. The target stain matrix is obtained by setting a target image

and extracting its stain matrix. In our experiments, we utilize “009.tiff” as the target image due to its com-

prehensive H&E stain colour spectrum. Furthermore, previous works related to the MIDOG challenge have

demonstrated its effectiveness for stain augmentation techniques [36].

In our implementation, we utilize TIAToolbox [35] library to realize both stain normalization and stain

augmentation techniques.

Wefirst extract the stainmatrix from the target image. Then by using TIAToolbox,we integrate the stain nor-

malization and stain augmentation techniques into the Albumentations pipeline developed. Finally, we repeat

the experiments with our proposed models to evaluate their performance. We use this new pipeline to train

Faster R-CNN with PyTorch, while maintaining the same training configuration of both models.

4 Results

All implementations are developed using Python 3.8, and PyTorch 1.13.0 with torchvision 0.14.0. Experiments

are conducted on a system powered by a dual AMD EPYC 7282 CPU and a 128 GiB DDR-4 DRAM. This sys-

tem is equipped a Nvidia GeForce RTX 4090 GPU with 24 GB GDDR6X memory. All experiments leverage the

computational capabilities of the RTX 4090, utilizing the GPU for processing.
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Figure 2: Domain matrix for single-domain training for Faster R-CNN. Note that h stands for human, c for canine, carci for carcinoma, t

for tumor, cut for cutaneous and sarc for sarcoma.

4.1 Analysis of Faster R-CNN

For Faster R-CNN, in the training phase, the average epoch duration is 63.72 s. Additionally, the average inference

time per image is 5.65 s for Faster R-CNN.

For both average training time and average inference time, we observe higher times for Faster R-CNN

compared to our previous research [5]. This time increase is due to Faster R-CNN architecture. As a two-stage

approach, Faster R-CNN first performs an object proposal stage, and then a classification and regression stage,

these two stages increase its complexity. In addition, we are using a denser backbone (ResNet-50-FPN) that

implies longer training times and higher computational costs.

We now analyze the results of Faster R-CNN in terms of the F1-score. Figure 2 shows the mean F1-score

for each tumor type in each single-domain experiment using Faster R-CNN. The diagonal generally presents

higher F1-scores compared to off-diagonal experiments. This is expected, as it shows the model performs best

when trained and tested on the same cancer type. For example, human breast carcinoma achieves a strong

F1-score when trained and tested on the same type (diagonal), and it also demonstrates good generalization

when tested on human melanoma. In addition, canine cutaneous mast cell tumor achieves the highest F1-score

of 0.85. However, human neuroendocrine tumor struggles to obtain high F1-scores, and canine lung carcinoma

and canine soft tissue sarcoma only achieve good scoreswhen trainedwith all tumor types. These low scores can

be attributed to two main factors: the quantity of mitotic figures associated with each specific tumor type, and

the morphological similarities between different tumor types, that limit the model’s generalization capabilities

when trained on a single tumor type. Nevertheless, in all tumor types experiment, the primary reason for the

low F1-scores remains the limited number of mitotic figures. Table 1 shows the mean and standard deviation of

the F1-score achieved using Faster R-CNN in each single-domain experiment.

Figure 3 shows the mean F1-score for each tumor type in each leave-one-out experiment using Faster R-

CNN.We observe significant generalization across all experimentswhen leaving one tumor type out for training.

Notably, the canine cutaneousmast cell tumor achieves the highest F1-score of 0.84, with canine lymphosarcoma
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Table 1:Mean and standard deviation of F1-score for single-domain training for Faster R-CNN.

Breast

carcinoma

Lung

carcinoma

Lymphosarcoma C. mast

cell tumor

Neuroendocrine

tumor

Soft tissue

sarcoma

Melanoma

Breast carcinoma 0.73± 0.01 0.36± 0.15 0.16± 0.08 0.62± 0.08 0.53± 0.06 0.56± 0.05 0.77± 0.03

Lung carcinoma 0.55± 0.03 0.64± 0.01 0.64± 0.04 0.61± 0.04 0.43± 0.06 0.62± 0.03 0.71± 0.04

Lymphosarcoma 0.42± 0.05 0.54± 0.02 0.81± 0.01 0.63± 0.02 0.31± 0.07 0.46± 0.06 0.49± 0.08

C. mast cell tumor 0.50± 0.06 0.48± 0.04 0.36± 0.06 0.85± 0.01 0.39± 0.10 0.45± 0.10 0.62± 0.07

Neuroendocrine tumor 0.55± 0.11 0.34± 0.14 0.17± 0.07 0.42± 0.08 0.52± 0.03 0.50± 0.09 0.70± 0.04

Soft tissue sarcoma 0.63± 0.04 0.58± 0.04 0.63± 0.06 0.54± 0.08 0.47± 0.01 0.73± 0.01 0.63± 0.04

Melanoma 0.46± 0.08 0.27± 0.07 0.11± 0.05 0.34± 0.14 0.58± 0.03 0.57± 0.08 0.82± 0.01

All 0.74± 0.01 0.65± 0.03 0.78± 0.01 0.85± 0.01 0.58± 0.03 0.73± 0.02 0.80± 0.03

Figure 3: Domain matrix for leave-one-out training for Faster R-CNN. Note that h stands for human, c for canine, carci for carcinoma, t

for tumor, cut for cutaneous and sarc for sarcoma.

and human melanoma also yielding strong results. However, the human neuroendocrine tumor type shows the

lowest F1-scores, likely due to the smaller number of mitotic figures and images compared to the other tumor

types. Table 2 shows the mean and standard deviation of the F1-score achieved using Faster R-CNN in each

leave-one-out experiment.

As Section 4.3 shows, results obtained by Faster R-CNN surpass those obtained in our previous research [5].

This demonstrates that a two-stage approachmodel, despite their higher cost in time and computation, achieves

better results than a one-stage model in MIDOG++ dataset.
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Table 2:Mean and standard deviation of F1-score for leave-one-out training for Faster R-CNN.

Breast

carcinoma

Lung

carcinoma

Lymphosarcoma C. mast

cell tumor

Neuroendocrine

tumor

Soft tissue

sarcoma

Melanoma

w/o Breast carcinoma 0.67± 0.06 0.64± 0.02 0.78± 0.03 0.83± 0.03 0.58± 0.01 0.72± 0.02 0.80± 0.02

w/o Lung carcinoma 0.72± 0.01 0.60± 0.01 0.78± 0.01 0.81± 0.01 0.58± 0.03 0.69± 0.03 0.78± 0.00

w/o Lymphosarcoma 0.74± 0.01 0.63± 0.01 0.55± 0.11 0.82± 0.02 0.59± 0.04 0.71± 0.02 0.80± 0.01

w/o C. mast cell tumor 0.74± 0.02 0.65± 0.01 0.78± 0.01 0.84± 0.01 0.61± 0.03 0.72± 0.01 0.79± 0.01

w/o Neuroendocrine tumor 0.72± 0.01 0.63± 0.01 0.77± 0.01 0.81± 0.02 0.57± 0.03 0.72± 0.02 0.77± 0.02

w/o Soft tissue sarcoma 0.72± 0.04 0.61± 0.04 0.78± 0.00 0.82± 0.01 0.57± 0.03 0.67± 0.03 0.79± 0.01

w/o Melanoma 0.72± 0.03 0.63± 0.01 0.78± 0.01 0.82± 0.02 0.58± 0.04 0.69± 0.04 0.78± 0.02

4.2 Analysis of stain augmentation and normalization techniques

We now evaluate and analyze results after implementing the stain augmentation and stain normalization for

Faster R-CNN. During the training phase, there is an increase in the average epoch duration due to the addition

of the stain techniques. However, the average inference time remains unaffected by this additional processing.

Figure 4 presents the mean F1-score for each tumor type in each single-domain experiment using Faster R-

CNN with stain techniques. We observe that results have improved in most cases, highlighting the achievement

of better generalization in all experiments. Regarding the diagonal results, F1-scores have improved in all cases,

except for canine cutaneous mast cell tumor, which has slightly decreased from 0.85 to 0.83 while still maintain-

ing the highest F1-score, and human melanoma, which has remained the same F1-score. When training with all

tumor types, we appreciate a similar pattern as with the diagonal results: each tumor type has slightly improved

Figure 4: Domain matrix for single-domain training for Faster R-CNN with stain techniques. Note that h stands for human, c for canine,

carci for carcinoma, t for tumor, cut for cutaneous and sarc for sarcoma.
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Table 3:Mean and standard deviation of F1-score for single-domain training for Faster R-CNN with stain techniques.

Breast

carcinoma

Lung

carcinoma

Lymphosarcoma C. mast

cell tumor

Neuroendocrine

tumor

Soft tissue

sarcoma

Melanoma

Breast carcinoma 0.74± 0.01 0.40± 0.05 0.23± 0.05 0.60± 0.08 0.55± 0.02 0.61± 0.02 0.77± 0.01

Lung carcinoma 0.57± 0.09 0.67± 0.01 0.61± 0.03 0.60± 0.08 0.48± 0.05 0.65± 0.03 0.67± 0.06

Lymphosarcoma 0.46± 0.09 0.45± 0.03 0.81± 0.00 0.63± 0.05 0.40± 0.13 0.45± 0.07 0.53± 0.10

C. mast cell tumor 0.62± 0.04 0.44± 0.04 0.29± 0.07 0.83± 0.01 0.49± 0.04 0.59± 0.04 0.66± 0.04

Neuroendocrine tumor 0.57± 0.02 0.34± 0.07 0.19± 0.04 0.44± 0.11 0.57± 0.01 0.53± 0.03 0.70± 0.03

Soft tissue sarcoma 0.63± 0.02 0.59± 0.03 0.59± 0.04 0.61± 0.05 0.48± 0.04 0.74± 0.01 0.64± 0.04

Melanoma 0.65± 0.03 0.34± 0.07 0.21± 0.06 0.56± 0.06 0.56± 0.05 0.59± 0.04 0.82± 0.02

All 0.76± 0.01 0.68± 0.01 0.79± 0.01 0.82± 0.01 0.61± 0.01 0.74± 0.01 0.80± 0.01

except for canine cutaneous mast cell tumor, which has decreased from 0.85 to 0.82, and human melanoma,

which has remained unchanged. Table 3 shows the mean and standard deviation of the F1-score achieved using

Faster R-CNN in each sigle-domain experiment with stain techniques.

Figure 5 presents the mean F1-score for each tumor type in each leave-one-out experiment using Faster

R-CNNwith stain techniques. The improvement in F1-scores acrossmost cases is appreciable. Notably, the gener-

alization of models has enhanced even when predicting tumor types not included in the training set. Among the

different tumor types, the F1-scores for human breast cancer, human neuroendocrine tumor, and canine soft tis-

sue sarcoma stand out. Additionally, in the experiment where canine lymphosarcoma is excluded from training,

Figure 5: Domain matrix for leave-one-out training for Faster R-CNN with stain techniques. Note that h stands for human, c for canine,

carci for carcinoma, t for tumor, cut for cutaneous and sarc for sarcoma.
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Table 4:Mean and standard deviation of F1-score for leave-one-out training for Faster R-CNN with stain techniques.

Breast

carcinoma

Lung

carcinoma

Lymphosarcoma C. mast cell

tumor

Neuroendocrine

tumor

Soft tissue

sarcoma

Melanoma

w/o Breast carcinoma 0.70± 0.01 0.65± 0.02 0.78± 0.01 0.81± 0.02 0.62± 0.03 0.73± 0.01 0.80± 0.01

w/o Lung carcinoma 0.74± 0.02 0.63± 0.00 0.79± 0.01 0.81± 0.01 0.63± 0.01 0.72± 0.01 0.79± 0.01

w/o Lymphosarcoma 0.75± 0.01 0.65± 0.03 0.62± 0.02 0.81± 0.02 0.60± 0.03 0.72± 0.02 0.80± 0.01

w/o C. mast cell tumor 0.73± 0.01 0.64± 0.02 0.78± 0.01 0.82± 0.01 0.63± 0.02 0.73± 0.02 0.80± 0.02

w/o Neuroendocrine tumor 0.74± 0.01 0.65± 0.01 0.78± 0.01 0.82± 0.01 0.59± 0.02 0.73± 0.02 0.79± 0.01

w/o Soft tissue sarcoma 0.74± 0.01 0.64± 0.02 0.77± 0.01 0.81± 0.02 0.60± 0.01 0.71± 0.01 0.80± 0.01

w/o Melanoma 0.73± 0.02 0.65± 0.01 0.77± 0.01 0.82± 0.01 0.59± 0.02 0.71± 0.01 0.77± 0.01

the F1-score for this tumor type improved from 0.55 to 0.62. However, we also observe a slight decrease in the F1-

score for canine cutaneous mast cell tumor, with the previous maximum of 0.84 dropping to 0.82. Table 4 shows

the mean and standard deviation of the F1-score achieved using Faster R-CNN in each leave-one-out experiment

with stain techniques.

4.3 Overall analysis

Finally, we analyze results obtained from all the experiments conducted in our research, to provide a compre-

hensive overview of which model performs best. Therefore, we compare results from the models developed in

our previous research [5] to those obtained by the models proposed in this study.

We first compare Faster R-CNN to RetinaNet-PyTorch and RetinaNet-fastai [5]. We focus on determining

whichmodel performs better in terms of F1-score or AP across different scenarios and cases,without considering

stain techniques.

Tables 5 and 6 summarize results for F1-score and AP, respectively, with Faster R-CNN, RetinaNet-PyTorch

and RetinaNet-fastai, indicating the number of cases where each model obtains the highest F1-score for single-

domain cases, along with the mean, maximum and minimum.

Table 5 shows that Faster R-CNN stands out as the best model by winning the most cases compared to other

models across both domains. It achieves the highest mean andmaximum F1-scores, and its minimum F1-score is

Table 5: Summary of mean F1-scores for the first group of models [5].

Model Single domain Leave-one-out domain

Cases won Mean F1 Max F1 Min F1 Cases won Mean F1 Max F1 Min F1

RetinaNet-fastai 15 0.5303 0.8460 0.1310 12 0.7028 0.8288 0.5370

RetinaNet-PyTorch 11 0.4987 0.7996 0.0426 18 0.6866 0.7745 0.4975

Faster R-CNN 30 0.5522 0.8486 0.1120 19 0.7115 0.8357 0.5481

Table 6: Summary of mean average precision APs for the first group of models [5].

Model Single domain Leave-one-out domain

Cases won Mean AP Max AP Min AP Cases won Mean AP Max AP Min AP

RetinaNet-fastai 31 0.3472 0.6518 0.1310 42 0.4590 0.6608 0.2297

RetinaNet-PyTorch 8 0.2355 0.5508 0.0426 1 0.3488 0.5712 0.1554

Faster R-CNN 17 0.3069 0.5937 0.1120 6 0.3901 0.5839 0.1279
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acceptable. Regarding RetinaNet-PyTorch, we note its consistency across both domains in comparison to other

models. This is evident in the number of cases where it achieves the highest F1-score in leave-one-out, only one

case behind from Faster R-CNN.

Table 6 shows that RetinaNet-fastai achieves the best results and wins most cases, surpassing Faster R-CNN.

However, the performance of Faster R-CNN is close to that of RetinaNet-fastai. This difference is primarily due to

the detection threshold set for eachmodel. A higher detection threshold tends tomakemore conservative detec-

tions, causing the rejection of predictions that might actually be true positives. Consequently, this can increase

false negatives and cause a decrease in recall, resulting in a lower AP score. In the experiments, RetinaNet-

fastai’s detection thresholds never exceed 0.65, while Faster R-CNN’s thresholds are typically set higher than 0.9

in all cases. During the evaluation stage, we establish the optimal detection threshold by testing different thresh-

olds and selecting the one that achieves the highest F1-score. We observe that this optimal detection threshold

depends on themodel used, with two-stagemodels achieving higher detection thresholds compared to one-stage

models. RetinaNet-PyTorch falls slightly behind the other models in terms of AP.

Regarding our implementation with the stain techniques Tables 7 and 8 shows results for F1-score and AP,

respectively, with Faster R-CNN, Faster R-CNN (S), RetinaNet-PyTorch and RetinaNet-fastai, indicating the num-

ber of cases where each model obtains the highest F1-score for single-domain cases, along with the mean, maxi-

mum and minimum. Note that (S) stands for models implemented with stain augmentation and normalization.

For F1-score, Table 7 shows that Faster R-CNNwith stain techniques achieves the best results among all mod-

els, with the highest number of cases and closely obtains the highest mean and maximum F1-scores. Notably,

Faster R-CNN also achieves the highest minimum mean F1-score. Nevertheless, the utilization of stain augmen-

tation and normalization techniques improves results for RetinaNet-PyTorch in both domains, but Faster R-CNN

without stain techniques still achieves superior results.

For AP, Table 8 shows that, again, RetinaNet-fastai is the best option obtaining always the highest values. The

choice of detection thresholds impacts all models in this scenario, since it affects the mean AP score achieved by

themodels. However, note that Faster R-CNNwith stain techniques achievesAP scores close to those of RetinaNet-

fastai in single-domain, although it slightly lags behind in leave-one-out experiments.

Finally, we compare the models performance in terms of both training and inference time. Additionally, we

analyze themean detection threshold range of themodels, obtained by studying all experiments and the various

detection thresholds employed. The summary of all models performance are shown in Table 9.

Table 7: Summary of F1-scores for all models [5]. Note that S means with stain techniques.

Model Single domain Leave-one-out domain

Cases won Mean F1 Max F1 Min F1 Cases won Mean F1 Max F1 Min F1

RetinaNet-fastai 7 0.5303 0.8460 0.1310 10 0.7028 0.8288 0.5370

RetinaNet-PyTorch 8 0.4987 0.7996 0.0426 10 0.6866 0.7745 0.4975

Faster R-CNN 12 0.5522 0.8486 0.1120 10 0.7115 0.8357 0.5481

Faster R-CNN (S) 26 0.5771 0.8327 0.1891 12 0.7242 0.8210 0.5867

Table 8: Summary of average precision (AP) for all models [5]. Note that S means with stain techniques.

Model Single domain Leave-one-out domain

Cases won Mean AP Max AP Min AP Cases won Mean AP Max AP Min AP

RetinaNet-fastai 27 0.3472 0.6518 0.1310 29 0.4590 0.6608 0.2297

RetinaNet-PyTorch 4 0.2355 0.5508 0.0426 1 0.3488 0.5712 0.1554

Faster R-CNN 7 0.3069 0.5937 0.1120 4 0.3901 0.5839 0.1279

Faster R-CNN (S) 13 0.3260 0.5963 0.1120 10 0.4180 0.5884 0.1188
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Table 9: Summary of all models performance [5].

Model Average training time Average inference time Mean detection threshold range

RetinaNet-fastai 42.66 1.34 [0.5, 0.61]

RetinaNet-PyTorch 43.33 2.43 [0.53, 0.65]

Faster R-CNN 63.72 5.65 [0.88, 0.96]

Faster R-CNN (S) 122.70 5.71 [0.9, 0.98]

In terms of average training time per epoch, RetinaNet models achieve lower training times compared to

Faster R-CNN. This is attributed to their one-stage architecture, which contrasts with the two-stage architecture

of Faster R-CNN. Furthermore, the application of the stain techniques increases the average training time of

models. In terms of average inference time per image, one-stage models performs faster inferences compared

to two-stage models, and RetinaNet-fastai presents the lowest average inference time. This can be attributed to

its lighter ResNet backbone [18] compared to the one used by RetinaNet-Pytorch [5]. The application of stain

techniques does not affect in average inference time of models.

Regarding the mean detection threshold range, we observe a notable contrast between the thresholds used

by one-stage models and those used by two-stage models. One-stage models commonly set detections threshold

that never exceeds 0.7. Among these one-stagemodels, we appreciate howRetinaNet-PyTorch tends to use higher

detection thresholds than RetinaNet-fastai. On the other hand, we observe how two-stage models employs high

detection thresholds, often approaching or exceeding 0.9. Furthermore, we notice how the utilization of stain

augmentation and normalization tends to make more conservative detections using a higher threshold that

models without stain techniques. Notably, the Faster R-CNN model with stain techniques achieves the highest

range of detection threshold reaching even 0.98 in different cases.

As a summary, Faster R-CNN with stain augmentation and normalization is the top choice due to its higher

detection thresholds, despite longer training and inference times. It provides more reliable predictions com-

pared to RetinaNet. However, if speed is prioritized, RetinaNet is preferable.

In terms of results, Faster R-CNN with stain techniques generally provides the highest F1-scores, which is

crucial since F1-score is themainmetric inMIDOG challenges.While RetinaNet-fastai achieves the best AP, Faster

R-CNN is close behind, particularly in single-domain scenarios. However, its conservative detection approach

can slightly lower AP by increasing false negatives. During inference, we observe that Faster R-CNN models

generatedmore predictions compared to the othermodels, particularly the variantwith stain augmentation and

normalization, further supporting the application of these Faster R-CNN models. Finally, model performance is

impacted by the variability in mitotic figures and the amount of images from different tumor types. Notably,

canine lung cancer and human neuroendocrine tumors achieve the lowest results, due to the lower number of

mitotic figures present in their images.

5 Conclusion and future work

In this research, we utilize the MIDOG++ [32] dataset to implement and evaluate the performance of two-stage

object detection models, specifically Faster R-CNN, with and without the application of stain augmentation and

normalization techniques. The primary objective is to demonstrate the effectiveness of two-stage object detec-

tion models in automated mitosis detection. The second one is to evaluate the role of stain augmentation and

normalization in mitigating domain shift.

Faster R-CNN models, especially with stain techniques, achieve superior F1-scores and detection accu-

racy, while RetinaNet shows better AP and faster inference times. The use of stain techniques improves model

generalization across different tumor types but increased training times. However, models struggle to detect

mitosis in tumors with fewer mitotic figures, such as neuroendocrine tumor and canine lung cancer.



14 — J. García-Salmerón et al.: Automated mitosis detection in stained histopathological images

As future work, we plan to further refine stain techniques tomore effectively address covariate shift, which

remains a critical challenge in improvingmodel generalization across different histopathological domains. Addi-

tionally, we aim to explore alternativemodels likeDEtection TRansformer (DETR), which leverages transformers

for enhanced feature extraction and detection. Another promising direction involves investigating Generative

Adversary Networks (GAN) to generate synthetic mitotic figures, addressing the challenge of limited data, par-

ticularly for tumor types with few annotated examples. These advancements could enhance the precision and

efficiency of mitosis detection, offering valuable support in cancer diagnosis.
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