Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1016/j.jalgebra.2022.05.005


Título: | MacWilliams extending conditions and quasi-Frobenius rings |
Fecha de publicación: | 1-sep-2022 |
Editorial: | Elsevier |
Cita bibliográfica: | Journal of Algebra Vol. 2022, Vol. 605, pp. 394-402 |
ISSN: | Print: 0021-8693 Electronic: 1090-266X |
Materias relacionadas: | CDU::5 - Ciencias puras y naturales::51 - Matemáticas |
Palabras clave: | MacWilliams ring Quasi Frobenius ring Automorphism invariant modules Self injective rings Perfect rings Artinian rings |
Resumen: | MacWilliams proved that every finite field has the extension property for Hamming weight which was later extended in a seminal work by Wood who characterized finite Frobenius rings as precisely those rings which satisfy the MacWilliams extension property. In this paper, the question of when is a MacWilliams ring quasi-Frobenius is addressed. It is proved that a right or left noetherian left 1-MacWilliams ring is quasi-Frobenius thus answering the different questions asked in [13], [22]. We also prove that a right perfect, left automorphism-invariant ring is left self-injective. In particular, this yields that if R is a right (or left) artinian, left automorphism-invariant ring, then R is quasi-Frobenius, thus answering a question asked in [13]. |
Autor/es principal/es: | Guil Asensio, Pedro Antonio Srivastava, Ashish K. |
Versión del editor: | https://www.sciencedirect.com/science/article/pii/S0021869322002149?via%3Dihub |
URI: | http://hdl.handle.net/10201/149027 |
DOI: | https://doi.org/10.1016/j.jalgebra.2022.05.005 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 8 |
Derechos: | info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
Descripción: | © 2022 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Algebra. To access the final edited and published work see https://doi.org/10.1016/j.jalgebra.2022.05.005 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2205.01830v1.pdf | 137,15 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons