Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.jalgebra.2022.05.005

Título: MacWilliams extending conditions and quasi-Frobenius rings
Fecha de publicación: 1-sep-2022
Editorial: Elsevier
Cita bibliográfica: Journal of Algebra Vol. 2022, Vol. 605, pp. 394-402
ISSN: Print: 0021-8693
Electronic: 1090-266X
Materias relacionadas: CDU::5 - Ciencias puras y naturales::51 - Matemáticas
Palabras clave: MacWilliams ring
Quasi Frobenius ring
Automorphism invariant modules
Self injective rings
Perfect rings
Artinian rings
Resumen: MacWilliams proved that every finite field has the extension property for Hamming weight which was later extended in a seminal work by Wood who characterized finite Frobenius rings as precisely those rings which satisfy the MacWilliams extension property. In this paper, the question of when is a MacWilliams ring quasi-Frobenius is addressed. It is proved that a right or left noetherian left 1-MacWilliams ring is quasi-Frobenius thus answering the different questions asked in [13], [22]. We also prove that a right perfect, left automorphism-invariant ring is left self-injective. In particular, this yields that if R is a right (or left) artinian, left automorphism-invariant ring, then R is quasi-Frobenius, thus answering a question asked in [13].
Autor/es principal/es: Guil Asensio, Pedro Antonio
Srivastava, Ashish K.
Versión del editor: https://www.sciencedirect.com/science/article/pii/S0021869322002149?via%3Dihub
URI: http://hdl.handle.net/10201/149027
DOI: https://doi.org/10.1016/j.jalgebra.2022.05.005
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 8
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Descripción: © 2022 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Algebra. To access the final edited and published work see https://doi.org/10.1016/j.jalgebra.2022.05.005
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2205.01830v1.pdf137,15 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons