Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1016/j.jalgebra.2022.05.005


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Guil Asensio, Pedro Antonio | - |
dc.contributor.author | Srivastava, Ashish K. | - |
dc.date.accessioned | 2025-01-22T09:18:03Z | - |
dc.date.available | 2025-01-22T09:18:03Z | - |
dc.date.issued | 2022-09-01 | - |
dc.identifier.citation | Journal of Algebra Vol. 2022, Vol. 605, pp. 394-402 | es |
dc.identifier.issn | Print: 0021-8693 | - |
dc.identifier.issn | Electronic: 1090-266X | - |
dc.identifier.uri | http://hdl.handle.net/10201/149027 | - |
dc.description | © 2022 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Algebra. To access the final edited and published work see https://doi.org/10.1016/j.jalgebra.2022.05.005 | - |
dc.description.abstract | MacWilliams proved that every finite field has the extension property for Hamming weight which was later extended in a seminal work by Wood who characterized finite Frobenius rings as precisely those rings which satisfy the MacWilliams extension property. In this paper, the question of when is a MacWilliams ring quasi-Frobenius is addressed. It is proved that a right or left noetherian left 1-MacWilliams ring is quasi-Frobenius thus answering the different questions asked in [13], [22]. We also prove that a right perfect, left automorphism-invariant ring is left self-injective. In particular, this yields that if R is a right (or left) artinian, left automorphism-invariant ring, then R is quasi-Frobenius, thus answering a question asked in [13]. | - |
dc.format | application/pdf | es |
dc.format.extent | 8 | es |
dc.language | eng | es |
dc.publisher | Elsevier | es |
dc.relation | The work of the first author is partially supported by the Spanish Government under grant PID2020-113206GB-I00/AEI/10.13039/501100011033 which includes FEDER funds of the EU, and by Fundación Séneca of Murcia under grant 19880/GERM/15. The work of the second author is partially supported by a grant from Simons Foundation (grant number 426367). | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | MacWilliams ring | es |
dc.subject | Quasi Frobenius ring | - |
dc.subject | Automorphism invariant modules | - |
dc.subject | Self injective rings | - |
dc.subject | Perfect rings | - |
dc.subject | Artinian rings | - |
dc.subject.other | CDU::5 - Ciencias puras y naturales::51 - Matemáticas | es |
dc.title | MacWilliams extending conditions and quasi-Frobenius rings | es |
dc.type | info:eu-repo/semantics/article | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0021869322002149?via%3Dihub | - |
dc.identifier.doi | https://doi.org/10.1016/j.jalgebra.2022.05.005 | - |
dc.contributor.department | Departamento de Matemáticas | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2205.01830v1.pdf | 137,15 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons