Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.jalgebra.2022.05.005

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorGuil Asensio, Pedro Antonio-
dc.contributor.authorSrivastava, Ashish K.-
dc.date.accessioned2025-01-22T09:18:03Z-
dc.date.available2025-01-22T09:18:03Z-
dc.date.issued2022-09-01-
dc.identifier.citationJournal of Algebra Vol. 2022, Vol. 605, pp. 394-402es
dc.identifier.issnPrint: 0021-8693-
dc.identifier.issnElectronic: 1090-266X-
dc.identifier.urihttp://hdl.handle.net/10201/149027-
dc.description© 2022 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Algebra. To access the final edited and published work see https://doi.org/10.1016/j.jalgebra.2022.05.005-
dc.description.abstractMacWilliams proved that every finite field has the extension property for Hamming weight which was later extended in a seminal work by Wood who characterized finite Frobenius rings as precisely those rings which satisfy the MacWilliams extension property. In this paper, the question of when is a MacWilliams ring quasi-Frobenius is addressed. It is proved that a right or left noetherian left 1-MacWilliams ring is quasi-Frobenius thus answering the different questions asked in [13], [22]. We also prove that a right perfect, left automorphism-invariant ring is left self-injective. In particular, this yields that if R is a right (or left) artinian, left automorphism-invariant ring, then R is quasi-Frobenius, thus answering a question asked in [13].-
dc.formatapplication/pdfes
dc.format.extent8es
dc.languageenges
dc.publisherElsevieres
dc.relationThe work of the first author is partially supported by the Spanish Government under grant PID2020-113206GB-I00/AEI/10.13039/501100011033 which includes FEDER funds of the EU, and by Fundación Séneca of Murcia under grant 19880/GERM/15. The work of the second author is partially supported by a grant from Simons Foundation (grant number 426367).es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMacWilliams ringes
dc.subjectQuasi Frobenius ring-
dc.subjectAutomorphism invariant modules-
dc.subjectSelf injective rings-
dc.subjectPerfect rings-
dc.subjectArtinian rings-
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases
dc.titleMacWilliams extending conditions and quasi-Frobenius ringses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0021869322002149?via%3Dihub-
dc.identifier.doihttps://doi.org/10.1016/j.jalgebra.2022.05.005-
dc.contributor.departmentDepartamento de Matemáticas-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2205.01830v1.pdf137,15 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons