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MACWILLIAMS EXTENDING CONDITIONS AND

QUASI-FROBENIUS RINGS

PEDRO A. GUIL ASENSIO AND ASHISH K. SRIVASTAVA

Abstract. MacWilliams proved that every finite field has the extension prop-
erty for Hamming weight which was later extended in a seminal work by Wood
who characterized finite Frobenius rings as precisely those rings which satisfy
the MacWilliams extension property. In this paper, the question of when is a
MacWilliams ring quasi-Frobenius is addressed. It is proved that a right or left
noetherian left 1-MacWilliams ring is quasi-Frobenius thus answering the different
questions asked in [13, 22]. We also prove that a right perfect, left automorphism-
invariant ring is left self-injective. In particular, this yields that if R is a right (or
left) artinian, left automorphism-invariant ring, then R is quasi-Frobenius, thus
answering a question asked in [13].

1. Introduction

A linear code of length n over a ring R is simply a submodule L of Rn. The
Hamming weight wt(x) of an element x = (x1, . . . , xn) ∈ Rn is defined as the
number of non-zero entries xi in x. In 1962, F. J. MacWilliams proved in her
Ph.D. dissertation that any Hamming weight isometry between two codes over a
finite field F extends to a monomial transformation of the ambient space Fn [18].
Recall that a monomial transformation of Rn is a map f : Rn → Rn of the form
f(x1, . . . , xn) = (xσ(1)u1, . . . , xσ(n)un) for some permutation σ ∈ Sn and invertible
elements ui ∈ R. As it was observed by Goldberg [7], the MacWilliams Extension
Theorem is an analogue of the Witt’s Extension Theorem for quadratic forms (see e.g
[17]). The original proof of MacWilliams was later simplified by Bogart, Goldberg
and Gordon [3]. Ward and Wood gave an alternative proof of the MacWilliams
Extension Theorem using character-theoretic approach [24].

A fundamental result in the study of linear codes over rings is the characteriza-
tion of finite Frobenius rings by Wood [25] as precisely those rings R which satisfy
the following MacWilliams extension property: every Hamming weight preserving
isomorphism between left submodules of Rn extends to a monomial transformation
of Rn. Inspired by this, a ring R is called left MacWilliams if every Hamming weight
preserving homomorphism f : L → Rn from a left submodule L of Rn extends to an
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automorphism of Rn. Thus, if R is left MacWilliams, then for n = 1 the extension
property tell us that each monomorphism f : I → R from a left ideal I of R extends
to an automorphism of RR. This is how automorphism-invariant modules naturally
appear in the theory of linear codes over rings.

Recall that a module M which is invariant under automorphisms of its injective
envelope is called an automorphism-invariant module. The study of modules which
are invariant under the action of certain subsets of the endomorphism ring of their
injective envelope goes back to the pioneering work of Johnson and Wong [15] in
which they characterized modules M for which every homomorphism f : L → M
from a submodule L of M extends to an endomorphism of M as precisely those
modules M which are invariant under any endomorphism of their injective envelope
E(M). Such modules are called quasi-injective modules. Injective modules are
trivially automorphism-invariant. Moreover, every quasi-injective module is also
automorphism-invariant. It was shown in [5] that a module M is automorphism-
invariant if and only if every monomorphism from a submodule of M extends to an
endomorphism of M . Automorphism-invariant modules are also known as pseudo-
injective modules in the literature. This class of modules was first studied by Dickson
and Fuller in [4] and it has been studied extensively in recent years. See [23], [9], [10],
[11] for more details on automorphism-invariant modules. If R is a ring such that RR
is a (quasi-)injective module then R is called a left self-injective ring, whereas if RR
is an automorphism-invariant module then R is called a left automorphism-invariant
ring.

Clearly, the MacWilliams extension property for n = 1 implies that R is a left
automorphism-invariant ring, and for n = 2, the MacWilliams extension property
implies that R is left self-injective (see Lemma 2.2).

A ring R is called quasi-Frobenius if R is left and right artinian and left and
right self-injective. The class of quasi-Frobenius rings was introduced by Nakayama
in his seminal paper [19] to study the duality between the categories of left and
right finitely generated modules over them. Later, Nakayama [20] and Ikeda [12]
characterized quasi-Frobenius rings as those rings which are right or left artinian
and right or left self-injective. Recall that a ring R is called a left perfect ring if
every left R-module has a projective cover. From Osofsky [21] and Kato [16], it
follows that if R is a left (or right) perfect, left and right self-injective ring, then R
is quasi-Frobenius. In 1976, Carl Faith [6] asked whether every left or right perfect,
left self-injective ring R is quasi-Frobenius. Faith initially conjectured the answer
to be “no” even for a semiprimary ring but later changed his mind and conjectured
the answer to be “yes”. So, now the following is known as Faith’s Conjecture:

Faith’s Conjecture: Every left or right perfect, left self-injective ring is quasi-
Frobenius.

This conjecture still remains open. In this paper, we look at a variation of this con-
jecture for left automorphism-invariant rings and prove that if R is a right perfect,
left automorphism-invariant ring then R is left self-injective. Now, if Faith’s Conjec-
ture is true then we will have that every right perfect, left automorphism-invariant
ring is quasi-Frobenius.

One of the main objectives of this paper is to answer the different questions raised
in [22] and [13]. Namely, the following questions are asked in those papers:
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Question 1.1. [22, Section 4, Question] Suppose R is a right artinian ring which
is left MacWilliams. Does it follow that R is a quasi-Frobenius ring?

Question 1.2. [13, Question 2.2]. What can be said about left (or left-right)
MacWilliams rings in general? Is a Noetherian / Noetherian commutative left
MacWilliams ring necessarily Artinian (and hence, QF)

We define the notion of left n-MacWilliams ring and, in this terminology, a ring R is
left MacWilliams if it is left n-MacWilliams for each n ≥ 1. We prove that any left
2-MacWilliams ring is left self-injective. And that, indeed, a right or left noetherian
(in particular, any left or right artinian) left 1-MacWilliams ring is quasi-Frobenius,
thus giving a positive answer to the questions above. In the process, we note that
a ring is left 1-MacWilliams if and only if it is left automorphism-invariant, which
allows us to also answer the following question asked in [13]:

Question 1.3. [13, Question 2.6]. If R is a right artinian, left automorphism-
invariant ring, does it follow that R is a quasi-Frobenius ring?

We refer to [1, 6, 8] for any undefined notion used in the text.

2. Results

We begin by first defining the terminology we will be using and making some basic
observations.

Definition 2.1. We will call a ring R to be a left n-MacWilliams ring if every
Hamming weight preserving homomorphism f : L → Rn from a left submodule L of
Rn extends to an automorphism of Rn.

Thus, a ring R is left MacWilliams if it is n-MacWilliams for each n ≥ 1.

Lemma 2.2. Let R be a ring.

(1) If R is left 1-MacWilliams, then it is left automorphism invariant.
(2) If R is a left 2-MacWilliams, then it is left self-injective.

Proof. (1) This follows easily from the definition as observed in introduction.
(2) If R is left 2-MacWilliams then this means R2 is automorphism-invariant.

Now, by [23, Corollary 4.6], RR is RR-injective. Thus, R is left self-injective. �

Now, we would like to study when is a 1-MacWilliams ring left self-injective ring.
The following technical lemma will be needed to prove our main result. Recall that,
given a left module M , the socle of M , denoted by Soc(M), is the sum of all simple
submodules of M . We will denote by J = J(R) the Jacobson radical of a ring R.

Lemma 2.3. Let R be a right perfect, left automorphism-invariant ring. Then
Soc(RR) is finitely generated and essential in RR.

Proof. It is well known that the left socle of a right perfect ring is an essential left
ideal (see [2]), so we only need to show that Soc(RR) is finitely generated. Assume
on the contrary that this is not the case. As R is, in particular, semiperfect, there
is only a finite number of isomorphism classes of simple left modules. So there must
exist an infinite direct sum, say ⊕n∈NCn, of simple left modules isomorphic among
them contained in R.
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Let us call um : Cm → ⊕n∈NCn, for each m ∈ N and v : ⊕n∈NCn → RR the
inclusions. And define, for each m ∈ N, homomorphisms fm : ⊕n∈NCn → RR as
follows:

• fm|C3m
= u3m+1 ◦ αm, where αm : C3m → C3m+1 is an isomorphism.

• fm|C3m+1
= u3m+2 ◦ βm, where βm : C3m+1 → C3m+2 is an isomorphism.

• fm|C3m+2
= u3m ◦ γm, where γm : C3m+2 → C3m is an isomorphism.

• fm|Cn
= un ◦ 1Cn

, if n 6= 3m, 3m+ 1, 3m+ 2.

Note that v ◦ fm : ⊕n∈NCn → RR is a monomorphism and therefore, there exists
a gm :R R →R R such that gm ◦ v = v ◦ fm since R is left automorphism-invariant.
Let rm = 1− gm(1) ∈ R. This element rm has the following properties:

(1) If 0 6= x ∈ C3m, then x · rm = (1 − gm)(x) = x − u3m+1 ◦ α(x) 6= 0 since
u3m+1 ◦ α(x) ∈ C3m+1. In particular, this means that C3m * lR(rm) and
thus, lR(rm) is not essential in RR, where lR(rm) denotes the left annihilator
of rm. Therefore, rm /∈ J(R) since J(R) equals the left singular ideal of R
(see e.g. [23, Theorem 3.3]).

(2) If 0 6= x ∈ C3m, then

x · r2m = (1− gm) ◦ (1− gm)(x) = (1− gm)(x− u3m+1 ◦ α(x)) =

x− u3m+1 ◦ α(x)− gm(x− u3m+1 ◦ α(x)) =

x− u3m+1 ◦ α(x)− u3m+1 ◦ α(x) + u3m+2βm ◦ αm(x) =

= x+ 2u3m+1 ◦ α(x) − u3m+2 ◦ βm ◦ αm(x) 6= 0

again since u3m+2 ◦ β ◦ α(x) ∈ C3m+2, u3m+1 ◦ α(x) ∈ C3m+1 and x ∈ C3m.
This means that C3m * lR(r

2
m) and thus, lR(r

2
m) is not essential in RR. In

particular, r2m /∈ J(R).
(3) If x ∈ Cn with n 6= 3m, 3m + 1 or 3m + 2, then gm(x) = x and thus,

x · rm = (1− gm)(x) = x− x = 0.
(4) rm ·rl ∈ J(R) when m 6= l since if n 6= 3m, 3m+1 or 3m+2, then Cn ·rm = 0

by (3). Whereas for x ∈ C3m ⊕ C3m+1 ⊕ C3m+2, we have that x · rm ∈
C3m ⊕ C3m+1 ⊕ C3m+2 and thus, (x · rm) · rl = 0, again by (3). This means
that ⊕n∈NCn ⊆ lR(rm · rl) and thus, rm · rl ∈ J(R).

Let us now consider the left ideal L =
∑

m∈N(Rrm + J(R))/J(R) of R/J(R). As
R/J(R) is semisimple (since R is right perfect) Lmust be finitely generated. So there
exists an m0 such that L =

∑
m≤m0

(Rrm+J(R))/J(R). And this means that there

exist sm ∈ R, for m = 1, . . . ,m0 and j ∈ J(R) such that rm0+1 =
∑

m≤m0
sm ·rm+j.

If we multiply on the right by rm0+1, then noting that rm0+1 · rm ∈ J(R) for any
m ≤ m0 in the view of property (4), we have that r2m0+1 ∈ J(R), a contradiction to
property (2). This shows that Soc(RR) must be finitely generated. �

We can now prove our main result.

Theorem 2.4. Let R be a right perfect left automorphism-invariant ring. Then R
is left self-injective.

Proof. As R is right perfect, it is in particular semiperfect. Thus, RR is a direct
sum of indecomposable projective left ideals. Moreover, Soc(RR) is finitely generated
and essential in RR by the above lemma. Call J = J(R) the Jacobson radical of R
and let Λ = {P1, . . . , Pn} be a representative set of the isomorphism classes of the
indecomposable projective left ideals. As R is semiperfect, each Pi is the projective
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cover of the simple left module Ci = Pi/JPi and {C1, . . . , Cn} is a representative
set of the isomorphism classes of the simple left R-modules. We know from [23,
Theorem 4.23] that if Pi is not quasi-injective, then End(Pi)/J(End(Pi)) ∼= F2. So
we may order the set Λ as follows:

(1) Pi is a non-quasiinjective module with End(Pi)/J(End(Pi)) ∼= F2 for i =
1, . . . , k.

(2) Pi is a quasi-injective module for i = k + 1, . . . , n.

Let us study the two cases:

(1) Let us first choose an i = k+1, . . . , n. Note that, as Pi is an indecomposable
quasi-injective left ideal, its injective envelope E(Pi) is also indecomposable
and Soc(Pi) consists in a simple left module. Call Di this simple module.
We claim that Di cannot be isomorphic to any simple module in the socle
of Pi′ for any i′ ∈ {1, . . . , n} with i′ 6= i. Assume on the contrary that Di is
isomorphic to a simple module Di′ in the socle of Pi′ . Let ϕ : Di → Di′ be an
isomorphism. As Pi ⊕ Pi′ is automorphism-invariant, Pi′ is Pi-injective and
Pi′ is Pi-injective (see e.g. [23, Corollary 4.6]). Therefore, ϕ and ϕ−1 extend
to homomorphisms f : Pi → Pi′ and g : Pi′ → Pi such that g ◦ f |Di

= 1Di
.

As Di is essential in Pi and Pi is quasi-injective, we deduce that g ◦ f is
an isomorphism and so, Pi is isomorphic to a direct summand of Pi′ . But
this means that Pi

∼= Pi′ , since Pi′ is indecomposable. A contradiction that
proves our claim.

(2) If i = 1, . . . , k, E(Pi) must be a direct sum of indecomposable modules
Qj with End(Qj)/J(End(Qj)) ∼= F2, by [23, Corollary 4.29]. And each Qj

contains a simple module by hypothesis. So Pi contains at least a simple
module whose endomorphism ring must be isomorphic to F2.

We wish to show that k = 0 and therefore, Pi is quasi-injective for every i =
1, . . . , n. Let us assume on the contrary that k ≥ 1.

Claim: There exists an i0 ∈ {1, . . . , k} and a simple module D ⊆ Soc(Pi0) which
is not isomorphic to any simple module in Soc(Pi) for any i ∈ {1, . . . , k} with i 6= i0.

Assume this is not the case. Call P = ⊕k
i=1Pi. We know that E(P ) is a direct

sum of indecomposables, say E(P ) = ⊕Qt. Let us choose a Qt. Then Qt must
contain an essential simple module D ⊆ Soc(Pi) for some i ∈ {1 . . . , k}, which must
be isomorphic to some other simple in the socle of Qt′ with t′ 6= t and thus, Qt

∼= Qt′ .
But then, if S = End(E(P )), we deduce that S/J(S) = ⊓Mnl

(Kl) is a product of
matrix rings over division rings satisfying that each nl ≥ 2. And thus, S/J(S) has
no homomorphic image isomorphic to F2. This means that any element in S/J(S)
is the sum of two units (see e.g. [23, Theorem 2.21]). And, as an element s ∈ S is
a unit if and only if s + J(S) is a unit in S/J(S), we deduce that any element in
S is the sum of two units. It follows that P is invariant under any endomorphism
of E(P ), since it is invariant under automorphisms of E(P ); what shows that P is
quasi-injective. This yields a contradiction, proving our claim that there exists an
i0 ∈ {1, . . . , k} and a simple module D ⊆ Soc(Pi0) such that D is not isomorphic to
any simple module in Soc(Pi) for any i = 1, . . . , k with i 6= i0.

Without loss of generality, we may assume that i = 1 and call D1 that simple
module. Let us now call P ′ = ⊕k

i=2Pi. Again P ′ is automorphism-invariant and
E(P ′) is a direct sum of indecomposables. The same argument of the claim shows
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that, if P ′ is not quasi-injective, then there exists an i1 ∈ {2, . . . , k} such that Pi1

contains a simple module which is not isomorphic to any simple module in the socle
of Pi for any i ∈ {2, . . . , k} with i 6= i1. Again we may suppose that i1 = 2 and call
D2 that simple module. Note that D2 6∼= D1.

Following this argument we find simple modules Di in the socle of Pi, for i =
1, . . . , k, such that Di is not isomorphic to any simple module in the socle of Pi′ for
any i′ ∈ {1, . . . , k} with i′ > i.

On the other hand, if i = k + 1, . . . , n, then Pi is quasi-injective and contains an
essential simple module Di that cannot be isomorphic to Di′ for any i′ ∈ {1, . . . , n}
with i′ 6= i as shown in Case (1). We have then proved that, for each i = 1, . . . , n,
there exists a simple module in Soc(Pi) such that Di ≇ Di′ for any i′ ∈ {1, . . . , n}
with i′ 6= i. And, as there are only n isomorphism classes of simple left modules,
this means that all simple modules in Soc(Pi) are isomorphic among them, for
any i = 1, . . . , n. But then, Pi is quasi-injective for each i = 1, . . . , n by [23,
Theorem 4.23]. A contradiction that proves our claim.

Therefore, ⊕n
i=1Pi is a direct sum of quasi-injective modules. But this means

that ⊕n
i=1Pi is also quasi-injective by [23, Corollary 4.7]. Thus, as RR is a direct

summand of a finite direct sum of copies of ⊕t
n=1Pn, it is also quasi-injective, that

is, R is a left self-injective ring. �

As a consequence, we have the following corollary that answers the Question 2.6
posed in [13].

Corollary 2.5. Let R be a right (or left) artinian ring. If R is left automorphism-
invariant, then R is quasi-Frobenius.

In particular, our Corollary 2.5 yields the following which answers [22, Section 4,
Question] and improves [13, Corollary 2.7].

Corollary 2.6. If R is a right (or left) artinian, left 1-MacWilliams ring, then R
is quasi-Frobenius.

Remark 2.7. In [13, Question 2.3], it is asked whether every artinian automorphism-
invariant module is a quasi-injective module. We would like to mention that an ex-
ample of an indecomposable artinian automorphism-invariant module which is not
quasi-injective is given in [11, Example 3.1] (see also [23, Example 4.21]).

We have implicitly shown in our proof of Theorem 2.4 that if R is a right perfect,
left automorphism-invariant ring, then each simple left R-module is isomorphic to a
simple module in Soc(RR). Thus, it follows that

Corollary 2.8. Every right perfect, left automorphism-invariant ring is a left pseudo-
Frobenius ring.

Now, we proceed to extend our results to left or right noetherian, left automorphism-
invariant rings. Recall that the left singular ideal Zl(R) of a ring R, is the left ideal
consisting of all elements of R whose left annihilator is an essential left ideal of R.

We can now give an affirmative answer to the question raised in [13] of whether
a left or right noetherian left 1-MacWilliams ring is quasi-Frobenius.

Theorem 2.9. Let R be a left or right noetherian ring. If R is left automorphism
invariant, then R is quasi-Frobenius.
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Proof. As R is left automorphism-invariant, R is semiregular (see e.g. [23, Theo-
rem 3.3]). And, as R is left or right noetherian, R/J(R) is semisimple. Thus, R is
semiperfect. Moreover, J = J(R) equals the left singular ideal Zl(R) (see e.g. [23,
Theorem 3.3]).

Now, we may apply [8, Proposition 3.31] in case R is left noetherian, or [14, Corol-
lary 1.3] in case R is right noetherian, to prove that J(R) is nilpotent. Therefore R
is right perfect and we can apply Theorem 2.4 to show that it is left self-injective.
Finally, R is quasi-Frobenius, since it is also left or right noetherian.

�

As every left 1-MacWilliams ring is left automorphism-invariant, we deduce:

Corollary 2.10. Every left 1-MacWilliams left or right noetherian ring is quasi-
Frobenius.
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