Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1007/s00009-021-01802-9


Título: | Endomorphism rings via minimal morphisms |
Fecha de publicación: | 7-jun-2021 |
Editorial: | Springer |
Cita bibliográfica: | Mediterranean Journal of Mathematics, 2021, Vol. 18 : 152 |
ISSN: | Print: 1660-5446 Electronic: 1660-5454 |
Palabras clave: | Endomorphism ring Ziegler partial morphism Approximations Automorphism invariant |
Resumen: | We prove that if u : K → M is a left minimal extension, then there exists an isomorphism between two subrings, EndM R (K) and EndK R (M) of EndR(K) and EndR(M) respectively, modulo their Jacobson radicals. This isomorphism is used to deduce properties of the endomorphism ring of K from those of the endomorphism ring of M in certain situations such us when K is invariant under endomorphisms of M, or when K is invariant under automorphisms of M. |
Autor/es principal/es: | Cortés Izurdiaga, Manuel Guil Asensio, Pedro Antonio Keskin Tutuncu, Derya Srivastava, Ashish K. |
Versión del editor: | https://link.springer.com/article/10.1007/s00009-021-01802-9 |
URI: | http://hdl.handle.net/10201/149015 |
DOI: | https://doi.org/10.1007/s00009-021-01802-9 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 13 |
Derechos: | info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
Descripción: | © 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted Manuscript version of a Published Work that appeared in final form in Mediterranean Journal of Mathematics. To access the final edited and published work see https://doi.org/10.1007/s00009-021-01802-9 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Final_Version_EndomorphismRings-MinimalMorphisms.pdf | 292,56 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons