Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1007/s00009-021-01802-9

Título: Endomorphism rings via minimal morphisms
Fecha de publicación: 7-jun-2021
Editorial: Springer
Cita bibliográfica: Mediterranean Journal of Mathematics, 2021, Vol. 18 : 152
ISSN: Print: 1660-5446
Electronic: 1660-5454
Palabras clave: Endomorphism ring
Ziegler partial morphism
Approximations
Automorphism invariant
Resumen: We prove that if u : K → M is a left minimal extension, then there exists an isomorphism between two subrings, EndM R (K) and EndK R (M) of EndR(K) and EndR(M) respectively, modulo their Jacobson radicals. This isomorphism is used to deduce properties of the endomorphism ring of K from those of the endomorphism ring of M in certain situations such us when K is invariant under endomorphisms of M, or when K is invariant under automorphisms of M.
Autor/es principal/es: Cortés Izurdiaga, Manuel
Guil Asensio, Pedro Antonio
Keskin Tutuncu, Derya
Srivastava, Ashish K.
Versión del editor: https://link.springer.com/article/10.1007/s00009-021-01802-9
URI: http://hdl.handle.net/10201/149015
DOI: https://doi.org/10.1007/s00009-021-01802-9
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 13
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Descripción: © 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted Manuscript version of a Published Work that appeared in final form in Mediterranean Journal of Mathematics. To access the final edited and published work see https://doi.org/10.1007/s00009-021-01802-9
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Final_Version_EndomorphismRings-MinimalMorphisms.pdf292,56 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons