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Abstract. We prove that if u : K → M is a left minimal extension, then
there exists an isomorphism between two subrings, EndM

R (K) and EndK
R (M)

of EndR(K) and EndR(M) respectively, modulo their Jacobson radicals. This

isomorphism is used to deduce properties of the endomorphism ring of K
from those of the endomorphism ring of M in certain situations such us when

K is invariant under endomorphisms of M, or when K is invariant under

automorphisms of M .

Introduction

Let R be a not necessarily commutative ring with unit element and M be a right
R-module. Suppose that we want to study the endomorphism ring of M . One
way to do this is to consider an approximation of M by a class of modules X ,
from which we know the structure of the endomorphism ring of its objects, and
try to deduce properties of EndR(M) from those of the endomorphism ring of its
X -approximation.

This approach has been fruitfully used to study the endomorphism ring of some
classical classes of module. For instance, it is well known that the endomorphism
ring of an injective module is von Neumann regular and right self injective modulo
the Jacobson radical, and idempotents lift modulo the Jacobson radical. Extending
this structural result, Faith and Utumi proved in [4] that the endomorphism ring
of a quasi-injective module enjoys these properties as well, using the fact that
quasi injective modules are, precisely, those which are invariant under the action of
endomorphisms of their injective envelopes [10].

Later on, Guil Asensio and Srivastava proved in [9] that if M is invariant under
automorphisms of its injective envelope, then its endomorphism ring is a von Neu-
mann regular ring modulo its Jacobson radical J , idempotents lift modulo J , and J
consists of those endomorphism of M which have essential kernel. This is another
example in which properties of the endomorphism ring of the injective envelope of
M are transferred to the endomorphism ring of M .

This last result has been extended in [8] to approximations with respect to a
class of modules X in the following way: if M has an X -envelope M → X such
that M is invariant under automorphisms of X, and EndR(X) is von Neumann
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regular modulo the Jacobson radical J , and idempotents lift modulo J , then the
endomorphism ring of M shares these properties.

The common situation in all these results is that there exists a morphism u :
M → X, which is minimal in some sense and such that M is invariant under
a set of endomorphisms of M , and it is possible to deduce the properties of the
endomorphism ring of M from those of the endomorphism ring of X.

In this paper we study the relationship between the endomorphisms ring of two
modules K and M when there exists a left minimal monomorphism u : K →
M (see Definition 1.1 for the notion of left minimal morphism). We prove, in

Theorem 1.11, that there exists an isomorphism between two subrings, EndM
R (K)

and EndK
R (M) of EndR(K) and EndR(M) respectively (see Definition 1.7), modulo

their Jacobson radical. These subrings coincide with the full endomorphisms rings
when u is injective with respect to K and K is invariant under endomorphisms
of M and, consequently, in this case we obtain an isomorphism between EndR(K)
and EndR(M) modulo their Jacobson radicals. This result explains the structure
of the endomorphism ring of a quasi-injective module obtained by Faith and Utumi
or, more generally, of the endomorphism ring of a module which is invariant under
endomorphisms of its X -envelope for some class of modules X (see Corollary 2.9).

When the module K is invariant under automorphisms of M in the left mini-
mal morphism u : K → M , then there does not exist, in general, an isomorphism
between the endomorphisms ring of K and M modulo their Jacobson radical. How-
ever, the second part of our main Theorem 1.11, which states that the aforemen-
tioned subring EndM

R (K) of EndR(K) modulo the Jacobson radical is isomorphic
to a subring of EndR(M) modulo the Jacobson radical, allows us to transfer, in

Theorem 2.6, properties from EndR(M) to EndM
R (K). As above, if the monomor-

phism u is K-injective, then EndM
R (K) is the whole endomorphism ring of K, and,

again, we can obtain the structure of EndR(K) from the structure of EndR(M).
There are other remarkable results in this paper. We prove, in Corollary 1.18

that, if R is commutative, and I is a cyclic maximal ideal which is not a direct
summand, then EndR(I) and R are isomorphic modulo the Jacobson radical.

In addition, we see in Proposition 1.6 that Ziegler small extensions are left min-
imal (see Definition 1.5 for the notion of Ziegler small extensions). Since, as it was
proved by Ziegler, there are many Ziegler small pure-injective extensions which are
not pure-injective envelopes (see Example 1.26), this gives new situations in which
our results can be applied.

Throughout this paper, R is an associative ring with unit element. Module
means right R-module and we denote by Mod-R the category of all such modules.
The Jacobson radical of R is denoted by J(R), and the group of units by U(R). If
M is a module, we denote by EndR(M) its endomorphism ring and by AutR(M)
the group consisting of all automorphisms of M , that is, AutR(M) = U(EndR(M)).

1. Subrings of endomorphisms rings associated to a minimal inclusion

In this section we study the relationship between the endomorphism rings modulo
the Jacobson radical of K and M for any left minimal inclusion K ↪→ M . Let us
begin recalling the definition of left minimal morphisms of modules [1, p. 8]:

Definition 1.1. We say that a morphism u : M → N is left minimal if any
endomorphism g : N → N such that gu = u, is an isomorphism. If u is monic, we
call it a left minimal extension.

Examples 1.2. (1) Let X be a class of all modules. Recall that an X -preenvelope
of a module M is a morphism u : M → C with C ∈ X , such that
HomR(u,C ′) is an epimorphism of abelian groups for each C ′ ∈ X . An
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X -envelope is an X -preenvelope which is a left minimal morphism. The
existence of X -envelopes is known for many classes of modules. Examples
are the injective, cotorsion and pure-injective modules.

(2) Let I be an ideal in the category Mod-R, that is, a sub-bifunctor of the
bifunctor Hom. An I-preenvelope of a module M (see [5]) is a morphism
u : M → I belonging to I, such that for each morphism j : M → J belonging
to I, there exists k : I → J such that ku = j. A monic I-preenvelope is
precisely an I-envelope which is a left minimal morphism.

(3) Recall that a submodule K of a module M is essential if L∩K 6= 0 for each
non-zero submodule L of M . A monomorphism u : K → M is called an
essential extension if Imu is an essential submodule in M .

Any essential extension u : K → M with M quasi-injective is left min-
imal. In order to prove this, take f : M → M with fu = u. Then f is
monic, since Ker f ∩ u(K) = 0, as u is monic. Using that M is quasi-
injective, we get that f is a split monomorphism, which implies that Im f is
a direct summand of M containing u(K). But, as u(K) is essential, Im f
is the whole M and f is an isomorphism.

The assumption of M being quasi-injective is fundamental. In order
to see this, suppose that the singular right ideal Z(R) of R is non-zero
and not equal to J(R) and let x ∈ Z(R) not belonging to J(R). Then
there exists t ∈ R such that 1 − tx is not a unit. Then the right ideal
I = {r ∈ R | xr = 0} is essential in R. Moreover, the inclusion u : I → R
is not left minimal, as the morphism f : R → R given by g(z) = (1− tx)z
satisfies that gu = u and it is not an isomorphism, as 1− tx is not a unit.

(4) As an extension of the preceding example consider the following setup: let
F be an additive exact structure in Mod-R, that is, a class of short exact
sequences in Mod-R that defines an exact structure (see [2]), and such
that it is closed under direct sums; for instance, the class of all pure-exact
sequences in Mod-R. An F-injective hull of a module M is an inflation
u : M → F , that is, the short exact sequence 0 → U → F → Cokeru → 0
belongs to F such that F is F-injective in the sense that F is injective with
respect to all short exact sequences belonging to F and u is F-essential in
the sense that for any other morphism v : F → G such that vu is an F-
inflation, u is an F-inflation as well. In [3, Theorem 3.10] it is proved that
an F-injective hull is a left minimal morphism. For instance, the pure-
injective envelope of a module is left minimal.

In the preceding example we saw that an essential extension might not be left
minimal. However, we have:

Proposition 1.3. Let u : K →M be a monomorphism. Then:

(1) If u is essential and Cokeru has finite length, then u is left minimal.
(2) If Cokeru = ⊕i∈ISi for a family {Si | i ∈ I} of simple modules satisfying

the following two conditions;
(a) Si � Sj if i 6= j, and
(b) Si is not isomorphic to a direct summand of M for any i ∈ I.

then u is left minimal.

Proof. (1) Let f : M →M be a morphism satisfying fu = u. Since u is an essential
monomorphism, f is monic. Notice that Ker f ∩ u(K) = 0, as u is monic. Now, we
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can construct a commutative diagram with exact rows

0 K M Cokeru 0

0 K M Cokeru 0

u p

f f

u p

Then f is monic, since Ker pf = f−1(u(K)) = u(K) = Ker p. Using that fu = u
we get that u(K) ≤ f−1(u(K)); the other inclusion follows from the fact that if
x ∈ f−1(u(K)), then f(x) = u(k) for some k ∈ K and f(x − u(k)) = 0, which
means that x = u(k) ∈ u(K).

Now, since Cokeru has finite length, “Fitting’s Lemma” implies that f actually
is an isomorphism. Then the “Five Lemma” gives that f is an isomorphism as well.

(2) Suppose that u is the inclusion. Let f : M → M be a morphism such that
fu = u. We can induce a commutative diagram as above

0 K M M/K 0

0 K M M/K 0

u p

f f

u p

Now, consider the following subsets of I: I1 = {i ∈ I | f(Si) 6= 0} and I2 = {i ∈ I |
f(Si) = 0}. Then the family {f(Si) | i ∈ I1} is independent, since otherwise, some
Si would be isomorphic to some distinct Sj , which contradicts the hypothesis. Using
that the decomposition {Si | i ∈ I} complements direct summands, there exists

J ≤ I such that M/K =
(⊕

i∈I1 f(Si)
)⊕(⊕

j∈J Sj

)
. But, since

⊕
i∈I1 f(Si) ∼=⊕

i∈I1 Si,
⊕

j∈J Sj is isomorphic to
⊕

i∈I2 Si which implies that J = I2. The

conclusion is that, if T =
⊕

i∈I1 f(Si), then M/K = T
⊕(⊕

i∈I2 Si

)
.

Now take a submodule L ≤ M with K ≤ L and L/K =
⊕

i∈I1 Si. Since f

induces the zero morphism in M/L, f(M) ≤ L. Then, looking at the commutative
diagram

0 K L L/K 0

0 K L T 0

p

f |L f |L/K

p

we deduce that f |L is an isomorphism as a consequence of the “Five Lemma”.
Note here that f induces an isomorphism from ⊕i∈I1Si to T . This yields that L
is a direct summand of M , which implies that

⊕
i∈I2 Si is isomorphic to a direct

summand of M . Since this is not the case, by hypothesis, we conclude that I2 = 0.
Consequently, I1 = I, f is an isomorphism and, by the “Five Lemma”, f is an
isomorphism as well. �

The hypothesis of u being essential in (1) cannot be removed, since the inclusion
u : K → M could be, for instance, a splitting monomorphism which is not an
isomorphism and splitting monomorphisms are not left minimal because, if u :
K → M is such a monomorphism, taking v : M → K with vu = 1K , we have
that uvu = u but uv : M → M is not an isomorphism. Moreover, there exist
non-splitting and non-essential monomorphisms with cokernel having finite length,
which are not left minimal, as the following example shows.

Example 1.4. Let M1 be an indecomposable module of length 2 and M2 a simple
module. Let M = M1 ⊕M2. Then the inclusion u : Soc(M1)→M is not essential
and its cokernel has finite length. Moreover, u is not left minimal, since if e ∈
EndR(M) is an idempotent endomorphism satisfying e(M) = M1, then eu = u, but
e is not an isomorphism.
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Other example of left minimal morphisms are given by the Ziegler small exten-
sions introduced in [13]. These small extensions are based in the notion of partial
morphism introduced in [13] in model theoretical language, studied in [11] with
algebraic methods and developed in [3] in exact categories. In this paper we only
consider partial morphism and Ziegler small extensions relative to the pure-exact
structure in the module category.

Definition 1.5. Let u : K →M be a monomorphism.

(1) Let f : K → N be a morphism and consider the pushout of f and the
inclusion u : K →M :

K M

N P

u

f f

u

,

Then:
(a) f is called a partial morphism from M to N with domain K if u is a

pure monomorphism. We shall denote by ParKR (M,N), the set of all
partial morphisms from M to N with domain K.

(b) f is called a partial isomorphism from M to N with domain K if both
u and f are pure monomorphisms.

(2) u is a Ziegler small extension if for any morphism g : M → N such that
gu is a partial isomorphism, g is a pure monomorphism.

Let u : M → E be a monomorphism with E pure-injective. Notice that if u is a
pure-injective envelope of M , then u is a Ziegler small extension by [3, Theorem
3.10]. However, u can be a Ziegler small extension without being a pure-injective
envelope, that is, u might not be pure. However, u is always left minimal:

Proposition 1.6. Every Ziegler small extension u : M → E with E pure-injective
is a left minimal monomorphism.

Proof. Let f : E → E be such that fu = u. If we consider the pushout of fu and
u we get a commutative diagram

K E

E P

u

fu h2

h1

.

Since fu = u, the identity 1E satisfies that 1Eu = 1Efu, so that, by the universal
property of the pushout, there exists g : P → E satisfying gh1 = 1E and gh2 = 1E .
In particular, both h1 and h2 are splitting monomorphisms and, consequently, fu
defines a partial isomorphism from E to E with domain K. Since u is a Ziegler
small extension, f is a pure-monomorphism.

Now, using that E is pure-injective we get that f is a split monomorphism
and there exists h : E → E such that hf = 1E . Then u = hfu = hu so that,
using the previous argument, we conclude that h is a monomorphism. Then, as
E = Im f ⊕Kerh, we get that f is an epimorphism. �

Now we define some rings of morphisms related with a monomorphism u : K →
M .

Definition 1.7. Let u : K →M be a monomorphism. We define:

• EndM
R (K) = {f ∈ EndR(K) | ∃g ∈ EndR(M) with uf = gu}.

• EndK
R (M) = {f ∈ EndR(M) | ∃g ∈ EndR(K) with fu = ug}.

• End
K

R (M) = {f ∈ EndR(M) | fu = 0}.
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The first of these subrings is related with partial morphisms defined previously.

Proposition 1.8. Let u : K →M be a monomorphism. Then:

(1) EndK
R (M) ⊆ ParKR (M,K).

(2) If M is pure-injective, then EndK
R (M) = ParKR (M,K).

Proof. Follows from [3, Proposition 2.5]. �

In order to prove the main result of this section, we need two preliminary lemmas:

Lemma 1.9. Let u : K →M be a monomorphism. Then:

(1) EndM
R (K) and EndK

R (M) are subrings of EndR(K) and EndR(M) respec-
tively.

(2) EndK
R (M) = {f ∈ EndR(M) | fu(K) ≤ u(K)}.

(3) End
K

R (M) is a left ideal of EndR(M) and a two sided ideal in EndK
R (M).

(4) The rings EndM
R (K) and EndK

R (M)/End
K

R (M) are isomorphic.

Proof. (1), (2) and (3) are straightforward. In order to prove (4) consider the map

Φ : EndM
R (K) → EndK

R (M)/End
K

R (M) given by Φ(f) = g + EndK
R (M), where

g ∈ EndR(M) is a morphism satisfying gu = uf . Note that the definition of Φ does
not depend on the choice of g, since any other morphism f ∈ EndR(M) verifying

hu = uf , satisfies that (g−h)u = 0 and, consequently, g−h ∈ End
K

R (M). Moreover,

Φ is epic, since any g ∈ EndK
R (M) satisfies that there exists f ∈ EndM

R (K) such

that gu = uf and, consequently, Φ(f) = g+End
K

R (M). Finally, Φ is monic because

if f ∈ EndM
R (K) satisfies that Φ(f) = g + End

K

R (M) = 0, then uf = gu = 0 and,
consequently, f = 0. �

Notice that, in general, if A is a subring of a ring B, there might be no rela-
tionship between the Jacobson radicals of A and B. In the particular case of a
monomorphism u : K → M , we have the following relation between J(EndK

R (M))
and J(EndR(M)).

Lemma 1.10. Let u : K →M be a monomorphism. Then:

(1) EndK
R (M) ∩ J(EndR(M)) ⊆ J(EndK

R (M)).

(2) If u is left minimal, End
K

R (M) ⊆ J(EndR(M)). In particular, End
K

R (M) ⊆
J(EndK

R (M)).

Proof. (1) Take j ∈ EndK
R (M) ∩ J(EndR(M)) and let us prove that aj is quasi-

regular for any a ∈ EndK
R (M). Fix a ∈ EndK

R (M) and notice that, since j ∈
J(EndR(M)), 1M −aj has an inverse t in EndR(M). But the equality t(1M −aj) =
1M gives that tu = u+aju, which implies that tu(K) ≤ u(K), since both j and a are

in EndK
R (M). Consequently, t actually belongs to EndK

R (M) and j ∈ J(EndK
R (M)).

(2) It is very easy to see that End
K

R (M) is a quasi-regular left ideal of EndR(M)

and, in particular, it is contained in J(EndR(M)): Given f ∈ EndK
R (M), fu = 0

so that (1M − f)u = u. Since u is left minimal, 1M − f is an isomorphism, that is,
f is quasi-regular. The last assertion follows from (1). �

Now we establish the main result of this section.

Theorem 1.11. Let u : K →M be a left minimal monomorphism. Then:

(1) EndM
R (K)/J(EndM

R (K)) and EndK
R (M)/J(EndK

R (M)) are isomorphic rings.

(2) EndM
R (K)/J(EndM

R (K)) is isomorphic to the subring π(EndK
R (M)) of EndR(M)/J(EndR(M)),

where π is the canonical projection.
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Proof. (1) By Lemma 1.9, there is an isomorphism

Φ : EndM
R (K)→ EndK

R (M)/End
K

R (M).

By Lemma 1.10, End
K

R (M) is contained in J(EndK
R (M)), so that there exists a

canonical ring epimorphism

Γ : EndK
R (M)/End

K

R (M)→ EndK
R (M)/J(EndK

R (M)).

Consequently, ΓΦ is an epimorphism from EndM
R (K) to EndK

R (M)/J(EndK
R (M)).

Moreover,

Ker(ΓΦ) = Φ−1
(
J(EndK

R (M))/End
K

R (M)
)

= J(EndM
R (K)).

Then, ΓΦ induces a ring isomorphism between EndM
R (K)/J(EndM

R (K)) and EndK
R (M)/J(EndK

R (M)).

(2) By Lemma 1.9, End
M

R (K) is contained in J(EndR(M)), so that there exists
a canonical morphism

Γ′ : EndM
R (K)/End

M

R (K)→ EndR(M)/J(EndR(M))

whose image is (EndK
R (M)+J(EndR(M)))/J(EndR(M). Now note that J(EndK

R (M)/End
K

R (M)) ≤
Ker Γ′ and that, actually, this inclusion is an equality: Given f+End

K

R (M) ∈ Ker Γ′,

we have that f ∈ EndK
R (M)∩J(EndR(M)), which is contained in J(EndK

R (M)) by
Lemma 1.10.

Finally, Γ′Φ is a morphism from EndM
R (K) to EndK

R (M)/J(EndK
R (M) whose

image is π(EndK
R (M)) and whose kernel is

Φ−1
(
J(EndK

R (M))/End
K

R (M)
)

= J(EndM
R (K)).

This gives the desired isomorphism. �

Remark 1.12. Note that the isomorphism

Ψ : EndM
R (K)/J(EndM

R (K))→ EndK
R (M)/J(EndK

R (M))

is given by Ψ(f + J(EndM
R (K)) = g + J(EndK

R (M)), where g is an endomorphism
of M satisfying uf = gu.

Analogously, the isomorphism

Θ : EndM
R (K)/J(EndM

R (K))→ EndK
R (M) + J(EndR(M))

J(EndR(M))

is given by Θ(f + J(EndM
R (K))) = g + J(EndR(M)), where g is an endomorphism

of M satisfying uf = gu.

Let u : K → M be a monomorphism. If EndK
R (M) = EndR(M), then K is

called a fully invariant submodule of M . Moreover, EndM
R (K) = EndR(K) when

u is K-injective. Recall that a morphism f : M → N in Mod-R is L-injective for
some module L, if HomR(f, L) is an epimorphism in the category of abelian groups.
As an immediate consequence of Theorem 1.11 we get:

Corollary 1.13. Let u : K →M be a monomorphism such that:

(1) u is left minimal and K-injective.
(2) K is a fully invariant submodule of M .

Then EndR(K)/J(EndR(K)) and EndR(M)/J(EndR(M)) are isomorphic rings.

Examples of K-injective monomorphisms u : K →M are the monic preenvelopes
with respect to classes of modules. Consequently:
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Corollary 1.14. Let X be a class of modules and u : M → X a monic X -envelope
such that M is a fully invariant submodule of X. Then EndR(M)/J(EndR(M))
and EndR(X)/J(EndR(X)) are isomorphic rings.

Modules which are fully invariant in their injective envelopes coincide with
the quasi-injective modules. For modules which are fully invariant in their pure-
injective envelopes or in their cotorsion envelopes we have the following result. Re-
call [6, Definition 3.7] that a monomorphism u : K →M is called strongly pure if it
is C-injective for every cotorsion module C. Clearly, strongly pure-monomorphism
are pure-monomorphisms, since the existence of pure-injective envelopes implies
that u is pure if and only if it is E-injective for each pure-injective module E.

Proposition 1.15. (1) Let M be a module which is fully invariant in its pure-
injective envelope. Then, for any pure monomorphism u : K → M and
morphism f : K →M , there exists h : M →M with hu = f .

(2) Let M be a module which is fully invariant in its cotorsion envelope. Then,
for any strongly pure monomorphism u : K → M and morphism f : K →
M , there exists h : M →M with hu = f .

Proof. Both are proved in a similar way. We prove (2). Let c : M → C be the
cotorsion envelope of M , u : K → M strongly pure and f : K → M . Since u
is strongly pure, there exists g : M → C such that gu = cu. Using that c is a
cotorsion envelope we can find h′ : C → C such that h′c = g. But, by assumption,
gc(M) ≤ c(M), so that there exists h′ : M → M with ch′ = gc. This h′ satisfies
h′u = f . �

Theorem 1.11 allows to relate the endomorphism rings of different envelopes:

Corollary 1.16. Let X and Y be classes of modules and M be a module. Let
u : M → X and v : M → Y be a monic X -envelope and Y-envelope respectively
such that M is fully invariant in X and Y . Then EndR(X)/J(EndR(X)) and
EndR(Y )/J(EndR(Y )) are isomorphic rings.

Proof. Since u and v are preenvelopes, EndX
R (M) = EndY

R(M) = EndR(M). Since

M is fully invariant in X and Y , EndM
R (X) = EndR(X) and EndM

R (Y ) = EndR(Y ).
Therefore, the result follows from Theorem 1.11. �

Now we give another example of a K-injective monomorphism u : K →M :

Proposition 1.17. Suppose that R is commutative and let K be a cyclic submodule
of a free module F . Then the inclusion u : K → F is K-injective.

Proof. Suppose that K = kR for some k ∈ K and let {xi | i ∈ I} be a free basis
of F . Given any f ∈ EndR(K), there exists s ∈ R such that f(k) = ks. Consider
g ∈ EndR(F ) the unique morphism satisfying g(xi) = xis for each i ∈ I. Then,
writing k =

∑
i∈I xiri, we have:

g(k) =
∑
i∈I

g(xi)ri =
∑
i∈I

xisri = ks

so that gu = f . �

As a consequence, we get:

Corollary 1.18. Suppose that R is commutative and let I be a cyclic ideal of R
such that R/I = S1 ⊕ · · · ⊕ Sn for non-projective simple modules S1, . . . , Sn. Then
EndR(I)/J(EndR(I)) ∼= R/J(R).
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Proof. By Proposition 1.3, the inclusion u : I → R is left minimal. Notice that, as
R is commutative, it is verified that Si � Sj for i 6= j. Since R is commutative, I is
fully invariant. Finally, by Proposition 1.17, the inclusion u : I → R is I-injective.
Now the result follows from Corollary 1.13. �

The hypothesis of the simple modules being non-projective is crucial:

Example 1.19. Let p and q be distinct primes and a = pq. The ring Z/aZ has
two maximal ideals, pZ/aZ and qZ/aZ, and we have Z/aZ = pZ/aZ ⊕ qZ/aZ. In
particular, J (Z/aZ) = 0. Moreover, EndR (pZ/aZ) is not isomorphic to R.

Remark 1.20. Notice that if I is a maximal cyclic ideal of R which is not a direct
summand, then EndR(I)/J(EndR(I)) ∼= R/J(R) as a consequence of the preceding
result.

Since the radical of a projective module is never a direct summand, unless it is
zero, we have:

Corollary 1.21. Suppose that R is a commutative local ring which is not a field
and such that J(R) is cyclic. Then EndR(J(R))/J(EndR(J(R))) ∼= R/J(R).

Remark 1.22. Notice that the trivial situation of the preceding result is when J(R)
is isomorphic to R, for instance, if R is a discrete valuation domain. However,
there exist commutative local rings not satisfying these properties. For instance,
Zpn , for p a prime number and n a natural number, is a commutative local ring
with non-projective Jacobson radical.

When a submodule K of a module M is not fully invariant, we can find a fully
invariant submodule of M containing K which is minimal with respect to these
properties being fully invariant and containing K:

Proposition 1.23. Let K be a submodule of a module M . We shall denote by EK

the submodule of M given by
∑

f∈EndR(M) f(K). Then EK is fully invariant and

contains K. Moreover, EK is minimal with respect to these properties: if L is a
fully invariant submodule of M containing K, then L contains EK .

Applying Theorem 1.11 to this situation we have:

Corollary 1.24. Let K be a submodule of a module M such that the inclusion u :
K →M is left minimal. Then the rings EndR(M)/J(EndR(M)) and EndM

R (EK)/J(EndM
R (EK))

are isomorphic.

Proof. Simply note that the inclusion EK ↪→ M is left minimal. Then apply The-
orem 1.11. �

We end this section studying submodules of pure-injective modules. As an ap-
plication of the results of this section, we can describe the partial endomorphisms
of a pure-injective module.

Corollary 1.25. Let u : K → M be a left minimal monomorphism with M
pure-injective. Then ParKR (M,K)/J(ParKR (M,K)) and EndK

R (M)/J(EndK
R (M))

are isomorphic rings.
If, in addition, K is fully invariant in M , then ParKR (M,K)/J(ParKR (M,K)) is

isomorphic to EndR(M)/J(EndR(M)).

Proof. Notice that, since M is pure-injective, EndM
R (K) = ParKR (M,K) by Propo-

sition 1.8. Then apply Theorem 1.11 and Corollary 1.13. �

Notice that there does exist (many) left minimal morphisms u : K →M with M
pure-injective which are not pure-injective hulls, as the following example shows.
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Example 1.26. Let K be a non-pure submodule of a pure-injective module M .
Ziegler proves in [13] that there exists a hull HM (K) of K in M , that is, a pure-
injective pure submodule of M containing K such that the inclusion u : K →
HM (K) is a maximal Ziegler small extension of K in M (see [11, Theorem 1.2 and
Corollary 1.3]). Since HM (K) is a pure submodule of M and is small over K in M ,
HM (K) actually is small over K in HM (K) by [3, Proposition 3.3]. This means
that the inclusion u : K → HM (K) is a Ziegler small extension. By Proposition
1.6, u is left minimal. By [11, Proposition 1.4], u is not a pure-injective hull of K
since it is not a pure-monomorphism, as K is not a pure submodule of M .

2. Automorphism invariant submodules

In this section we study minimal monomorphisms u : K → M assuming that K is
invariant under automorphisms inM . In this case, the rings EndR(M)/J(EndR(M))
and EndR(K)/J(EndR(K)) need not be isomorphic. However, we can use Theorem
1.11 to prove that EndR(K) inherits many properties of EndR(M).

Definition 2.1. Let u : K →M be a monomorphism. We say that K is automor-
phism invariant in M if for each f ∈ Aut(M) there exists g ∈ EndR(K) such that
ug = fu.

For example of automorphism invariant submodules see [7, Example 3.4].

Remarks 2.2. (1) As it is pointed out in [8, Remark 3.2] the morphism g in
the previous definition actually is an automorphism of K.

(2) Clearly, a right ideal I of R is automorphism-invariant if U(R)I ⊆ I.

It is easy to find the automorphism-invariant right ideals in triangular matrix
rings. Recall that a generalized triangular matrix ring is a ring of the form T =(

A 0
X B

)
such that A and B are rings, and X is a (B,A)-bimodule. The opera-

tions in T are the usual matrix operations. The following is straightforward:

Lemma 2.3. Let T be the triangular matrix ring

(
A 0
X B

)
. Then

U(T ) =

{(
a 0
bxa b

)
| a ∈ U(A), b ∈ U(B), x ∈ X

}
.

Proposition 2.4. Let T be the triangular matrix ring

(
A 0
X B

)
. Then the

automorphism-invariant right ideals of T are of the form

(
I1 0
I2 I3

)
with

(1) I1 an automorphism-invariant right ideal of A.
(2) I3 is an automorphism-invariant right ideal of B.
(3) I2 is a right A-submodule of X satisfying XI1 + U(B)I2 ⊆ I2.

Proof. Let J be a right ideal of T . If J is of the form

(
I1 0
I2 I3

)
, where I1, I2 and

I3 satisfy (1), (2) and (3), then J is clearly automorphism-invariant. Conversely,

suppose that J is automorphism-invariant. It is easy to see that if

(
a 0
x b

)
∈ J ,

then

(
a 0
0 0

)
,

(
0 0
x 0

)
and

(
0 0
0 b

)
belong to J as well, so that J is of the

form

(
I1 0
I2 I3

)
for right ideals I1 and I3 of A and B respectively, and a right

A-submodule I2 of X. Now, using that J is automorphism-invariant it is easy to
see that I1, I2 and I3 satisfy (1), (2) and (3). �
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The following result computes the radical of EndK
R (M) for a left minimal monomor-

phism u : K →M in which K is automorphism-invariant.

Lemma 2.5. Let u : K → M be a left minimal monomorphism such that K is
automorphism-invariant in M . Then J(EndK

R (M)) = J(EndR(M)).

Proof. For any j ∈ J(EndR(M)), using that 1M − j is invertible and that K is

automorphism-invariant, we conclude that j ∈ EndK
R (M). Using Lemma 1.10 we

have J(EndR(M)) ≤ J(EndK
R (M)). Now, the radical of EndK

R (M)/J(EndR(M)) is

J(EndK
R (M))/J(EndR(M)); since EndR(M)/J(EndR(M) has zero radical, we con-

clude that J(EndK
R (M))/J(EndR(M)) = 0. Thus it follows that J(EndK

R (M)) =
J(EndR(M)). �

Theorem 2.6. Let u : K → M be a left minimal monomorphism such that K is
automorphism-invariant in M . Then:

(1) If idempotents in EndR(M) lift modulo J(EndR(M)), then so do in EndM
R (K).

(2) If EndR(M)/J(EndR(M)) is von Neumann regular and right self-injective,

then EndM
R (K)/J(EndM

R (K) ∼= R1×R2 where R1 is an abelian regular ring
and R2 is a von Neumann regular right self-injective ring which is invariant
under left multiplication by elements in EndR(M)/J(EndR(M)).

(3) If EndR(M)/J(EndR(M) is von Neumann and right self-injective and there
do not exist nonzero ring morphisms from EndR(M) to Z2, then K is fully
invariant in M .

Proof. (1) Let f ∈ EndM
R (K) be such that f + EndM

R (K) is an idempotent in

EndM
R (K)/J(EndM

R (K)) and take g an endomorphism of M such that gu = uf .

Then, following the notation of Remark 1.12, Θ(f+J(EndM
R (K))) = g+J(EndR(M))

is idempotent in EndR(M)/J(EndR(M)). By hypothesis, there exists an idempo-
tent h in EndR(M) such that h−g ∈ J(EndR(M)). By Lemma 2.5, J(EndR(M)) =

J(EndK
R (M)), so that there exists t ∈ J(EndK

R (M)) such that h − g = t. Take
s ∈ EndR(K) such that us = tu. Then h = t+ g and hu = (t+ g)u = u(s+ f). Set
w = s+f . Then w is idempotent since uw2 = h2u = hu = uw and w2 = w because
u is monic. Moreover, u(w − f) = us, so that, again since u is monic, w − f = s.

But Θ(s+J(EndM
R (K))) = t+J(EndR(M)) = 0, so that s ∈ J(EndM

R (K)). Hence

w − f ∈ J(EndM
R (K)).

(2) By Theorem 1.11, EndM
R (K)/J(EndM

R (K)) is isomorphic to the subring

EndK
R (M)/J(EndR(M)). SinceK is automorphism-invariant, EndK

R (M)/J(EndR(M))
is stable under left multiplication by units of EndR(M)/J(EndR(M)). Then the
result follows from [8, Theorem 2.4].

(3) By [8, Proposition 2.5], EndK
R (M)/J(EndR(M)) = EndR(M)/J(EndR(M),

which implies that EndK
R (M) = EndR(M). This is equivalent to K being a fully

invariant submodule of M . �

If the monomorphism u : K → M is K-injective, then EndM
R (K) = EndR(K)

and we get:

Corollary 2.7. Let u : K →M be a left minimal and K-injective monomorphism
such that K is automorphism-invariant in M . Then:

(1) If idempotents in EndR(M) lift modulo J(EndR(M)), then so do in EndR(K).
(2) If EndR(M)/J(EndR(M) is von Neumann regular and right self-injective,

then EndR(K)/J(EndR(K) ∼= R1 ×R2 where R1 is an abelian regular ring
and R2 is a von Neumann regular right self-injective ring which is invariant
under left multiplication by elements in EndR(M)/J(EndR(M)).
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When a submodule K of a module M is not automorphism invariant, we can
find an automorphism invariant submodule of M containing K which is minimal
with respect to these properties being fully invariant and containing K.

Proposition 2.8. Let K be a submodule of a module M . We shall denote by
AK the submodule of M given by

∑
f∈AutR(M) f(K). Then AK is automorphism-

invariant and contains K. Moreover, AK is minimal with respect to this property:
if L is an automorphism-invariant submodule of M containing K, then L contains
AK .

The following well known facts about the structure of endomorphisms rings are
consequences of our results:

Corollary 2.9. Let u : M → E be a morphism.

(1) If u is an injective envelope and M is automorphism-invariant in E, then
EndR(M)/J(EndR(M)) is von Neumann regular, right self-injective and
idempotents lift modulo J(EndR(M)). If, in addition, M is fully invariant
in E (equivalently, M is quasi-injective), then EndR(M)/J(EndR(M)) ∼=
EndR(E)/J(EndR(E)).

(2) If u is a pure-injective envelope and M is automorphism-invariant in E,
then EndR(M)/J(EndR(M)) is von Neumann regular, right self-injective
and idempotents lift modulo J(EndR(M)). If, in addition, M is fully in-
variant in E , then EndR(M)/J(EndR(M)) ∼= EndR(E)/J(EndR(E)).

(3) If u is a cotorsion envelope and M is flat and automorphism-invariant

in E, then EndR(M)
J(EndR(M)) is von Neumann regular, right self-injective and

idempotents lift modulo J(EndR(M)). If, in addition, M is fully invariant
in E, then EndR(M)/J(EndR(M)) ∼= EndR(E)/J(EndR(E)).

Proof. (1) The structure of EndR(M) follows from Corollary 2.7 and the structure
of the endomorphism ring of an injective module (see, for instance, [12, Theorem
XIV.1.2]). The isomorphism follows from Corollary 1.14.

(2) The structure of EndR(K) follows from Corollary 2.7 and the structure of
the endomorphism ring of a pure-injective module. The isomorphism follows from
Corollary 1.14.

(3) Since u is, in particular, a special cotorsion preenvelope, C is flat and cotor-
sion. Then the structure of EndR(M) follows from Corollary 2.7 and the structure
of the endomorphism ring of a flat cotorsion module (see [6]). The isomorphism
follows from Corollary 1.14. �
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