Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1007/s00009-021-01802-9


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Cortés Izurdiaga, Manuel | - |
dc.contributor.author | Guil Asensio, Pedro Antonio | - |
dc.contributor.author | Keskin Tutuncu, Derya | - |
dc.contributor.author | Srivastava, Ashish K. | - |
dc.date.accessioned | 2025-01-22T09:22:11Z | - |
dc.date.available | 2025-01-22T09:22:11Z | - |
dc.date.issued | 2021-06-07 | - |
dc.identifier.citation | Mediterranean Journal of Mathematics, 2021, Vol. 18 : 152 | es |
dc.identifier.issn | Print: 1660-5446 | - |
dc.identifier.issn | Electronic: 1660-5454 | - |
dc.identifier.uri | http://hdl.handle.net/10201/149015 | - |
dc.description | © 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted Manuscript version of a Published Work that appeared in final form in Mediterranean Journal of Mathematics. To access the final edited and published work see https://doi.org/10.1007/s00009-021-01802-9 | - |
dc.description.abstract | We prove that if u : K → M is a left minimal extension, then there exists an isomorphism between two subrings, EndM R (K) and EndK R (M) of EndR(K) and EndR(M) respectively, modulo their Jacobson radicals. This isomorphism is used to deduce properties of the endomorphism ring of K from those of the endomorphism ring of M in certain situations such us when K is invariant under endomorphisms of M, or when K is invariant under automorphisms of M. | - |
dc.format | application/pdf | es |
dc.format.extent | 13 | es |
dc.language | eng | es |
dc.publisher | Springer | es |
dc.relation | M. Cortés-Izurdiaga is partially supported by the Spanish Government under Grants MTM2016-77445-P and MTM2017-86987-P which include FEDER funds of the EU and Grant UAL18-FQM-B008A-E(UAL/CECEU/FEDER) . D. Keskn Tütüncü is partially supported by the Spanish Government under grant MTM2016-77445-P which includes FEDER funds of the EU, and by Fundación Séneca of Murcia under Grant 19880/GERM/15. A. K. Srivastava is partially supported by a Grant from Simons Foundation (Grant number 426367) | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Endomorphism ring | es |
dc.subject | Ziegler partial morphism | - |
dc.subject | Approximations | - |
dc.subject | Automorphism invariant | - |
dc.title | Endomorphism rings via minimal morphisms | es |
dc.type | info:eu-repo/semantics/article | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s00009-021-01802-9 | - |
dc.identifier.doi | https://doi.org/10.1007/s00009-021-01802-9 | - |
dc.contributor.department | Departamento de Matemáticas | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Final_Version_EndomorphismRings-MinimalMorphisms.pdf | 292,56 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons