Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1007/s00009-021-01802-9

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCortés Izurdiaga, Manuel-
dc.contributor.authorGuil Asensio, Pedro Antonio-
dc.contributor.authorKeskin Tutuncu, Derya-
dc.contributor.authorSrivastava, Ashish K.-
dc.date.accessioned2025-01-22T09:22:11Z-
dc.date.available2025-01-22T09:22:11Z-
dc.date.issued2021-06-07-
dc.identifier.citationMediterranean Journal of Mathematics, 2021, Vol. 18 : 152es
dc.identifier.issnPrint: 1660-5446-
dc.identifier.issnElectronic: 1660-5454-
dc.identifier.urihttp://hdl.handle.net/10201/149015-
dc.description© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted Manuscript version of a Published Work that appeared in final form in Mediterranean Journal of Mathematics. To access the final edited and published work see https://doi.org/10.1007/s00009-021-01802-9-
dc.description.abstractWe prove that if u : K → M is a left minimal extension, then there exists an isomorphism between two subrings, EndM R (K) and EndK R (M) of EndR(K) and EndR(M) respectively, modulo their Jacobson radicals. This isomorphism is used to deduce properties of the endomorphism ring of K from those of the endomorphism ring of M in certain situations such us when K is invariant under endomorphisms of M, or when K is invariant under automorphisms of M.-
dc.formatapplication/pdfes
dc.format.extent13es
dc.languageenges
dc.publisherSpringeres
dc.relationM. Cortés-Izurdiaga is partially supported by the Spanish Government under Grants MTM2016-77445-P and MTM2017-86987-P which include FEDER funds of the EU and Grant UAL18-FQM-B008A-E(UAL/CECEU/FEDER) . D. Keskn Tütüncü is partially supported by the Spanish Government under grant MTM2016-77445-P which includes FEDER funds of the EU, and by Fundación Séneca of Murcia under Grant 19880/GERM/15. A. K. Srivastava is partially supported by a Grant from Simons Foundation (Grant number 426367)es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEndomorphism ringes
dc.subjectZiegler partial morphism-
dc.subjectApproximations-
dc.subjectAutomorphism invariant-
dc.titleEndomorphism rings via minimal morphismses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00009-021-01802-9-
dc.identifier.doihttps://doi.org/10.1007/s00009-021-01802-9-
dc.contributor.departmentDepartamento de Matemáticas-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Final_Version_EndomorphismRings-MinimalMorphisms.pdf292,56 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons