Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.artmed.2020.101818

Título: Feature selection based multivariate time series forecasting: An application to antibiotic resistance outbreaks prediction
Fecha de publicación: abr-2020
Editorial: Elsevier
Cita bibliográfica: Artificial Intelligence In Medicine, 104 (2020) 101818
Materias relacionadas: CDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática.::004.9 - Técnicas basadas en el ordenador orientadas a aplicaciones
Palabras clave: Feature Selection
Antibiotic resistance
Multivariate time series
Antibiotic resistance forecasting
Multiple criteria decision making
Resumen: AAntimicrobial resistance has become one of the most important health problems and global action plans have been proposed globally. Prevention plays a key role in these actions plan and, in this context, we propose the use of Artificial Intelligence, specifically Time Series Forecasting techniques, for predicting future outbreaks of Methicillin-resistant Staphylococcus aureus (MRSA). Infection incidence forecasting is approached as a Feature Selection based Time Series Forecasting problem using multivariate time series composed of incidence of Staphylococcus aureus Methicillin-sensible and MRSA infections, influenza incidence and total days of therapy of both of Levofloxacin and Oseltamivir antimicrobials. Data were collected from the University Hospital of Getafe (Spain) from January 2009 to January 2018, using months as time granularity. The main contributions of the work are the following: the applications of wrapper feature selection methods where the search strategy is based on multi-objective evolutionary algorithms (MOEA) along with evaluators based on the most powerful state-ofthe-art regression algorithms. The performance of the feature selection methods has been measured using the root mean square error (RMSE) and mean absolute error (MAE) performance metrics. A novel multi-criteria decision- making process is proposed in order to select the most satisfactory forecasting model, using the metrics previously mentioned, as well as the slopes of model prediction lines in the 1, 2 and 3 steps-ahead predictions. The multi-criteria decision-making process is applied to the best models resulting from a ranking of databases and regression algorithms obtained through multiple statistical tests. Finally, to the best of our knowledge, this is the first time that a feature selection based multivariate time series methodology is proposed for antibiotic resistance forecasting. Final results show that the best model according to the proposed multi-criteria decision making process provides a RMSE=(0.1349, 0.1304, 0.1325) and a MAE=(0.1003, 0.096, 0.0987) for 1, 2, and 3 steps-ahead predictions.
Autor/es principal/es: Jiménez Barrionuevo, Fernando
Palma Méndez, José Tomás
Sánchez, Gracia
Marín, David
Palacios, Francisco
López, Lucia
Versión del editor: https://www.sciencedirect.com/science/article/pii/S0933365719306608?via%3Dihub
URI: http://hdl.handle.net/10201/148741
DOI: https://doi.org/10.1016/j.artmed.2020.101818
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 16
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
AIIM2019 - V2[82].pdf1,32 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons