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Abstract

Antimicrobial resistance has become one of the most important health problems and global action plans have been
proposed globally. Prevention plays a key role in these actions plan and, in this context, we propose the use of
Artificial Intelligence, specifically Time Series Forecasting techniques, for predicting future outbreaks of Methicilin-
resistant Staphylococcus aereus (MRSA). Infection incidence forecasting is approached as a Feature Selection based
Time Series Forecasting problem using multivariate time series composed of incidence of Staphylococcus Aereus
Methicilin-sensible and MRSA infections, influenza incidence and total days of therapy of both of Levoflaxin and
Oseltamivir antimicrobials. Data were collected from the University Hospital of Getafe (Spain) from January 2009 to
January 2018, using months as time granularity. The main contributions of the work are the following: the applications
of wrapper feature selection methods where the search strategy is based on multi-objective evolutionary algorithms
(MOEA) along with evaluators based on the most powerful state-of-the-art regression algorithms. The performance of
the feature selection methods has been measured using the root mean square error (RMSE) and mean absolute error
(MAE) performance metrics. A novel multi-criteria decision-making process is proposed in order to select the most
satisfactory forecasting model, using the metrics previously mentioned, as well as the slopes of model prediction lines
in the 1, 2 and 3 steps-ahead predictions. The multi-criteria decision-making process is applied to the best models
resulting from a ranking of databases and regression algorithms obtained through multiple statistical tests. Finally, to
the best of our knowledge, this is the first time that a feature selection based multivariate time series methodology is
proposed for antibiotic resistance forecasting. Final results show that the best model according to the proposed multi-
criteria decision making process provides a RMSE = (0.1349, 0.1304, 0.1325) and a MAE = (0.1003, 0.096, 0.0987)
for 1, 2, and 3 steps-ahead predictions.

Keywords: Feature Selection, Multi-objective Evolutionary Algorithms, Multivariate Time Series, Antibiotic
Resistance Forecasting, Multiple Criteria Decision Making.

1. Introduction

The discovery of penicillin in 1928 constituted a great stride in human health, providing us with a simple cure for
infections that, otherwise, could cause death. Nonetheless, the massive use of antimicrobials and, more importantly,
their misuse are threatening with an increasing spread of multi-resistant bacteria which can cause infections with fatal
consequences. According to recent studies, antimicrobial resistance (AMR) is estimated to be responsible for 25,000
death per year in the EU [1] and 700,000 deaths per year globally, and it is estimated that, by 2050, deaths caused by
AMR surpass death caused by cancer. As a result, AMR has become one of the most important health problems and
global action plans have been proposed globally both at European Union [2] and worldwide levels [3]. Prevention
plays a key role in these actions plan and, in this context, we proposed the use of Artificial Intelligence, specifically
Time Series Forecasting techniques, for predicting outbreaks of multi-resistant bacteria from hospital-level data.

To this end, we have focused on infections caused by Methicilin-sensible Staphylococcus Aureus (SA) and Methi-
cilin-resistant Staphylococcus Aereus (MRSA). SA is an important human pathogen associated with a wide range
of infections, ranging from infective endocarditis to skin and device-related infections [4]. Furthermore, SA is the
leading cause of nosocomial pneumonia, surgical site infections [5] and community-acquired pneumonia, which is
a well known as a potentially catastrophic complication of influenza with a high mortality rate [6, 7]. MRSA is
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a methicilin-resistant SA strain which can persist not only in hospital (where the use of an antimicrobial agent is
high) but also at the community level. MRSA, isolated in 1961, is still an important life-threatening multi-drug
resistant pathogen, being the major cause of nosocomial infections although, from 1997, has also been detected at
community level infections [8]. One of the major concerns related to MRSA is that its resistant pattern change to
adapt to each new antimicrobial agents. Pneumonia infections (both nosocomial and community-acquired), caused
by either SA or MRSA can be a consequence of influenza complications. Consequently, being able to predict the
incidence of them could have positive implications in the definitions of protocols for empiric antimicrobial regimens
as well as preventive measures such as seasonal influenza vaccination campaigns [9]. In this work, infection incidence
forecasting is approached as a time series forecasting problem using five time series involved with the influenza
protocol collected from the Hospital Universitario de Getafe (Spain).

Time series forecasting is the process of using a model to generate forecasts for future events based on known
past events. Time series data have a natural temporal ordering. This differs from typical machine learning applica-
tions where each data point is an independent example of the concept to be learned, and the ordering of data points
within a data set does not matter. For this reason, standard machine learning methods should not be used directly to
analyse time series data. In this paper, we propose a methodology to, firstly, transform the time series into a form that
standard machine learning algorithms can process, and then, systematically apply a set of feature selection methods
for regression [10]. Time series data is transformed by removing the temporal ordering of individual input examples
and adding a set of delays to the input which are called lagged variables and provide the temporal information. This
approach to time series forecasting is more powerful and more flexible than classical statistics techniques such as
ARMA and ARIMA [11]. Feature selection methods are applied for the selection of lagged variables. Random Forest,
Instance-Based learning, Linear Regression, Support Vector Machines, Gaussian Processes and Deep Learning algo-
rithms are used in this paper for regression with the different reduced databases. We also consider an autoregressive
model in the set of experiments. A multi-criteria decision making process is applied to the best forecasting models
resulting from statistical tests in order to choose the most satisfactory model for the h-steps-ahead predictions, where
RMSE and MAE are used as performance metrics. The experiments have been carried out using the Waikato Environ-
ment for Knowledge Analysis (Weka) [12] and the packages caret [13] and marima of R [14]. In summary, the main
contributions of the work are the following:

1. We have applied wrapper feature selection methods where the search strategy is based on multi-objective evo-
lutionary computation, and evaluators based on the most powerful regression algorithms of the state-of-the-art
have been used, among which Support Vector Machines, Gaussian Processes and Deep Learning are included.
These multivariate wrapper feature selection methods have been compared to other popular wrapper methods
such as Recursive Feature Elimination or filter methods such as Minimum Redundancy - Maximum Relevance
and Correlation-based Feature Selection. Autoregressive models built with MARIMA and VAR have also been
included in the comparison set.

2. Both RMSE and MAE metrics have been used in the configuration of wrapper feature selection methods to
measure the merit of candidate attribute subsets.

3. We have proposed a novel multi-criteria decision-making process to choose the most satisfactory forecast
model, which uses RMSE and MAE metrics, as well as slopes of the prediction lines of the models in h-steps-
ahead predictions. The multi-criteria decision-making process is applied to the 10 best models resulting from a
ranking of databases and regression algorithms obtained through multiple statistical tests.

4. Finally, to the best of our knowledge this is the first time that a multivariate time series feature selection method-
ology is proposed for predicting antibiotic resistance.

With this background the paper has been organized as follows: section 2 defines the concept of feature selection
and their categorization, shows the related works and describes the data set used for experiments; section 3 proposes
a methodology for multivariate time series forecasting of antibiotic resistance based on feature selection; section 4
analyses and discusses the results, and finally section 5 concludes the paper.

2. Background

2.1. Feature Selection
Feature Selection (FS) is defined in [15] as the process of eliminating features from the database that are irrelevant
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to the task to be performed. FS facilitates data understanding, reduces the measurement and storage requirements,
the computational process time, and the size of a data set, so that model learning becomes an easier process. An FS
method is basically a search strategy where the performance of candidate subsets is measured with a given evaluator.
The search space for candidate subsets has cardinality O(2w), where w is the number of features. A stopping criterion
establishes when the FS process must finish. It can be defined as a control procedure that ensures that no further
addition or deletion of features produces a better subset, or it can be as simple as a counter of iterations. FS methods
are typically categorized into wrapper, filter and embedded, univariate and multivariate methods. Wrapper methods
[16] use a predetermined learning algorithm to determine the quality of selected features according to an evaluation
metric [17]. Filter methods apply statistical measures to evaluate the set of attributes [18, 19, 20]. Embedded methods
achieve model fitting and FS simultaneously [21]. Multivariate methods evaluate features in batches. Univariate
methods evaluate each feature independently.

Some advantages and disadvantages are as follows: filter methods are computationally faster than wrappers;
wrapper methods are more accurate than filters; wrapper methods perform feature selection depending on the learning
algorithm used, while the feature selection made by the filters methods is conceived for a more general-purpose
(statistical); embedded methods perform the feature selection and learning processes simultaneously, which is, at
the same time, an advantage and a disadvantage (both processes are integrated, but the feature selection may not be
optimal); univariate methods do not take into account interactions between factors, while multivariate do.

2.2. Multi-objective Evolutionary Feature Selection
The first evolutionary approach involving multi-objective optimization for FS was proposed by Ishibuchi [22] in

2000. Since then, many multi-objective evolutionary approaches for FS have appeared in the literature, both filter
and wrapper methods, and in supervised and unsupervised environments. Below are some of the most relevant works
published during the last five years.

Kimovski et. al. [23] propose a parallel multi-objective optimization approach to cope with high-dimensional
FS problems. Several parallel multi-objective evolutionary alternatives are proposed and experimentally evaluated by
using some synthetic and BCI (Brain-Computer Interface) benchmarks. Paul and Das [24] propose a filter FS method
for simultaneous FS and weighting. They use inter-class and intra-class distance measures which are maximized and
minimized simultaneously by using a MOEA based on Decomposition (MOEA/D [25]). Jiménez et al. [26] propose a
MOEA for FS, called ENORA, applied in on-line sales forecasting. ENORA is implemented as a wrapper FS method
for regression tasks, where the RMSE obtained with Random Forest for the selected attributes is minimized along with
the number of selected attributes. In [27], Jiménez et al. investigate whether the use of MOEAs is more appropriate
for FS than the single-objective evolutionary algorithms, as well as the accuracy metric versus the area under the
ROC curve, in the context of virtual screening for drug discovery in classification tasks. Jiménez et al. [28] propose
a wrapper FS method for fuzzy rule-based classification systems where both the search strategy and the evaluator
consist of a MOEA. Due to the high complexity of the method, the authors investigate the optimal configuration for
the population size and the number of generations in both MOEAs, obtaining a compromise between the performance
of the classifier and the run time.

Multi-objective Differential Evolution (MODE) has also been applied successfully to FS in recent years. Sikdar
et al. [29] apply a wrapper FS method for entity extraction in biomedical texts using classifier ensemble evaluated
with F-measure and number of selected attributes as objectives, which is compared with the existing biomedical
entity extraction systems that were developed using the same datasets. Nayak et al. [30] propose a filter approach
(FAEMODE) using elitism based MODE algorithm for FS. The dependency of feature subset with the target class
is maximized, and feature redundancy is minimized. Both linear and non-linear dependency among features was
considered to handle the redundant and unwanted features of a dataset. Results were compared with filter and wrapper
methods. Another multi-objective approach based on differential evolution (DEMO) has been proposed by Mlakar
et al. [31] as wrapper FS method for facial expression recognition. The number of used features was minimized,
while the emotion recognition accuracy of the support vector machine classifiers was maximized simultaneously. The
results have been compared state-of-the-art methods, where NSGA-II [32] is included. Das et al. [33] propose a filter
FS method using a MODE with two objectives: set approximation accuracy of rough set theory and relational algebra
based derived score. Hancer et al. [34] propose a filter FS approach consist of a three-objective differential evolution
algorithm to optimize mutual relevance, ReliefF ranking and Fisher Score ranking. Finally, Hancer also proposes
MODE based filter FS methods which combine standard mutual information and fuzzy mutual information in [35], and
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fuzzy and kernel-based information measures in [36]. Bidgoli et al. [37] propose a MODE algorithm for multi-label
FS with considering number of features and classification accuracy as objectives. A binary operator is proposed based
on opposition-based learning concept and partially voting between two candidate solutions to decide about the absence
or presence of a feature in the third randomly selected solution. The proposed operator is used in third evolution step
of generalized differential evolution (GDE3 [38]). Zhang et al. [39] propose a binary differential evolution algorithm
with self-learning strategy, called MOFS-BDE, to solve multi-objective feature selection problems. MOFS-BDE uses
a new binary mutation operator based on probability difference to guide the individuals to locate potentially optimal
areas fast, a new one-bit purifying search operator (OPS) for improving the self-learning capability of elite individuals,
and a non-dominated sorting operator with crowding distance to reduce the time consumption of the selection operator
in differential evolution. Zhang et al. also proposes other metaheuristics for multi-objective feature selection, such as
particle swarm optimization and artificial bee colony algorithm, where cost-based feature selection [40], cost-sensitive
feature selection [41], and feature selection of unreliable data [42] are focused.

2.3. Related Work

Tyralis and Papacharalampous [43] conducted a study on the optimal number of lag variables that should be used
for time series forecasting with Random Forest. Crone and Kourentzes [44] performed feature selection for time
series prediction using a neural network. By combining contemporaneous and lagged realisations of the independent
variables and lagged dependent variables more general models of dynamic regression, autoregressive (AR) transfer
functions and intervention models are constructed. It has also been done by Sun et al. [45] using the Granger
causality discovery to identify important features with effective sliding window sizes, considering the influence of
lagged observations of features on the target time series. Hido and Morimura [46] have searched for the optimal time-
windows and time lags for each variable based on feature pre-processing and sparse learning in order to configure the
input dataset.

The first works of the application of time series analysis to antibiotic resistance were performed by López-Lozano
et al. [47, 48]. The authors demonstrate a temporal relationship between antimicrobial use and resistance, to quantify
the effect of their use on resistance and to estimate the delay between variations of use and subsequent variations
in resistance. Willmann et al. [49] investigate the association between antimicrobial use and resistance rates in
Pseudomonas Aeruginosa by using time series analysis. Erdeljić et al. [50] compare two different commonly used
statistical methods in their ability to investigate the relationship between antipseudomonal antimicrobial consumption
and resistance rates of P. Aeruginosa isolate in a single Intensive Care Unit (ICU) of a tertiary hospital, namely simple
linear correlation (Pearson’s r) and distributed lags time series analysis. Faust et al. [51] apply time series analysis
on multiple longitudinal datasets to illustrate their potential for microbiome research. Dalum Hansen et al. [52]
study how well antimicrobial drug consumption can be predicted based on web search queries, compared to historical
purchase data of antimicrobial drugs. First, they select web search queries that are likely to indicate antimicrobial
drug consumption; then, for each query frequency time series they generate several lagged versions and decide which
lags should be used for the prediction; and finally they use appropriate prediction models (Linear Elastic Net and
Gaussian Processes) to infer antimicrobial drug consumption.

2.4. Antibiotic resistance dataset

For this experiment, we have used a multivariate time series dataset with five time series. Each time series is
composed of 108 events collected from a hospital between January 2009 to January 2018, using months as time
granularity. Figure 1 shows the five time series used in this work and the unit in which each series is measured is
shown in Table 1. We have selected these time series since they are involved in the influenza protocol. Influenza first
symptoms are treated with Oseltamivir c© antiviral drug to improve disease symptoms. In order to prevent bacterial
infections as a complication of influenza, Levofalxin c© antibiotic is also administrated. The most common, and more
risky, bacterial infections are those provoked by SA and MRSA which, as said before, can lead to fatal consequences.

SA and MRSA time series are measured in monthly incidences and Levoflaxin and Oseltamivir in total days of
therapy (DOT) by months. Incidence is calculated as a proportion between the number of inpatients that, before the
moment that it is calculated, are affected by the event (that is, new events) and the total number of inpatients. That
is to say, the incidence of influenza in march, 31st (the measures are taking at the end of the month) indicates the
number of inpatients affected by influenza divided by the total number of inpatients. DOT represents the number of
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Figure 1: Time series used in this work.

Series Unit
Staphylococcus aureus meticilin sensible (SA) Incidence
Staphylococcus aureus meticilin resistant (MRSA) Incidence
Influenza Incidence
Levoflaxin Days of Therapy (DOT)
Oseltamivir Days of Therapy (DOT)

Table 1: Time series considered in this work and their units.

days in which a patient is treated with the corresponding antimicrobial. Therefore, in the corresponding time series is
represent the sum of DOT over a month in the hospital. The choice of time series is justified by the bibliographical
evidence that interrelates them:

• MRSA: The association between exposure to antibiotics and the isolation of MRSA has been demonstrated
in [53]. Explicitly, the Society for Healthcare Epidemiology of America (SHEA) guidelines for preventing
nosocomial transmission of MRSA and Vancomycin-Resistant Enterococci (VRE), highlights the importance
of reducing quinolones (levofloxacin) for the prevention of MRSA infection in hospitals [54].

• Influenza: Influenza increases the chance of getting a secondary bacterial infection. However, the proportion
of patients who develop a bacterial infection related to a flu episode is relatively small. Influenza per se is not
an indication of antibiotic treatment [55, 56].

• SA: Unlike MRSA, it is usually sensitive to Levoflaxin c©. This is why the use of Levoflaxin c© creates the
conditions in which MRSA acquires a competitive advantage by eradicating susceptible microorganisms with
SA [57].

• Oseltamivir c©: It is indicated as a symptomatic treatment of influenza, restricted in our environment to the
seasonal period of influenza. It is an antiviral treatment without any antibacterial activity [58].

• Levofloxacin c©: There is evidence of seasonal prescription of levofloxacin c© for respiratory pathologies and
that this seasonal prescription coincides with that of influenza. It is estimated that a 20% reduction in the
incidence of influenza leads to an 8% reduction in levofloxacin c© [59].
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3. A methodology for multivariate time series forecasting of antibiotic resistance based on feature selection

We have followed the methodology shown in the Figure 2 to perform the viral incidence time series forecasting.
The following five steps have been systematically applied: database transformation, feature selection, forecasting,
statistical tests and decision making. Next, each step of the methodology is described separately in a section. Table 13
summarizes the Weka and R packages, classes and functions used in this work to implement the proposed methodology.

 

Database 

Multi-criteria decision 
making 

1, 2, 3 step-ahead 
RMSE, MAE 

Forecaster 

Database transformation 
Time Series Lag Maker 

Lag lenght 2, 4, 6 

Multi-objective evolutionary feature selection 
MultiObjectiveEvolutionarySearch 

WrapperSubsetEval 
Dl4jMlpClassifier, GaussianProcesses, IBk, 
LinearRegression, RandomForest, SVMreg 

RMSE, MAE 

Forecasting 1, 2, 3 steps-ahead 
Transformed databases 

Reduced databases 
Dl4jMlpClassifier, GaussianProcesses, IBk, 
LinearRegression, RandomForest, SVMreg 

Autoregressive 
methods 
MARIMA 

VAR 

Other feature selection methods 
Correlation-based FS 

mRMR 
RFE-SVM 

Statistical tests 
10-fold cross-validation 

RMSE, MAE 

Final model 

Figure 2: Methodology for feature selection for antibiotic resistance multivariate time series forecasting.
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3.1. Database transformation
The first step of our methodology is to transform the database by creating lagged versions of variables for use in the

time series problem. We use the class weka.classifiers.timeseries.core.TSLagMaker for this task. Data transformation
can be done from the plugin tab in Weka’s graphical “Explorer” user interface, or and using the API through a Java
program. The following considerations have been taken into account for the database transformation:

1. Since the database does not contain a date field, we use an artificial time index.
2. The system can jointly model multiple attributes to lag simultaneously to capture dependencies between them.

Because of this, modelling several series simultaneously can give different results for each series than modelling
them individually. We set all the attributes 1 to 5 as lagged attributes.

3. We have experienced setting the maximum lag length to 2, 4 and 6. A value of n means that a lagged variable
will be created that holds target values at time n. All time periods between the minimum and maximum lag will
be turned into lagged variables. In this way, for example with minimum lag length equal to 0 and maximum lag
length equal to 2 for the variable Staphylococcus aureus meticilin resistant, this variable will be transformed
into 3 lagged variables Lag Staphylococcus aureus meticilin resistant+0 (equivalent to the variable Staphylo-
coccus aureus meticilin resistant) Lag Staphylococcus aureus meticilin resistant-1 and Lag Staphylococcus-
aureus meticilin resistant-2. Lagged variables are the main mechanism by which the relationship between

past and current values of a series can be captured by propositional learning algorithms. Lagged variables
create a “window” over a time period. So, the number of lagged variables created determines the size of the
window. For example, if we have monthly data then including lags up to 12 time steps into the past would make
sense. We have tested with 6, 4 and 2 lag lengths, which represent window-size of half-year, four-months and
two-months respectively.

4. Three transformed databases have been created (one for each lag length 2, 4 and 6) containing respectively 16,
26 and 36 attributes ((lag length + 1) · 5 + 1 attributes in total, where 5 is the number of lagged attributes).

5. We save the transformed databases with the names LL2, LL4 and LL6. These transformed databases will be
used later in the forecasting phase.

3.2. Feature selection
Once the transformed databases LL2, LL4 and LL6 are obtained, the next step is to apply FS to each of them.

In Weka, FS is implemented with the class weka.attributeSelection.AttributeSelection through two components: the
search strategy (weka.attributeSelection.ASSearch abstract class) and the evaluator (weka.attributeSelection.ASEva-
luation abstract class). This allows users and programmers to configure a multitude of different methods for FS, both
filter and wrapper, univariate and multivariate. We are interested in the wrapper methods due to its greater precision.
The search strategy MultiObjectiveEvolutionarySearch has been developed by authors of this paper demonstrating a
great efficiency in feature selection problems for regression [26]. MultiObjectiveEvolutionarySearch class has two
multi-objective evolutionary algorithms implemented, ENORA and NSGA-II. ENORA [60] is our MOEA, on which
we are intensively working over the last decade. NSGA-II [32] was designed by K. Deb et al. and has been proved
to be a very powerful and fast algorithm in multi-objective optimization contexts. In [26] is statistically tested that
ENORA performs better than NSGA-II in terms of hypervolume [61, 62] for regression tasks, for which we have
decided to use ENORA in this work. ENORA is an elitist Pareto-based multi-objective evolutionary algorithm that
uses a (µ + λ) survival with a uniform random initialization, binary tournament selection, ranking based on a local
non-domination level with crowding distance, self-adaptive uniform crossover and self-adaptive one-bit flip mutation.
MultiObjectiveEvolutionarySearch, in conjunction with WrapperSubsetEval1 [16], solves the following 2-objective
optimization problem:

1Weka incorporates the class WrapperSubsetEval to allow users to configure wrapper FS methods with attribute subset evaluation. Wrapper-
SubsetEval evaluates the worth of an attribute subset using a user-specified learning algorithm (classification or regression), p-fold cross-validation
(by default 5), and a measure to evaluate the performance of the learning algorithm with the attribute subset. The performance measure could be
accuracy (only for nominal class), RMSE (over the probabilities of the nominal class), MAE (over the probabilities of the nominal class), F-measure
(only for nominal class), area under the ROC curve (only for nominal), area under the precision-recall curve (nominal class only), and correlation
coefficient (numerical class only). Repeating cross-validation (5 times as maximum) is required if the standard deviation of the mean exceeds a
threshold (by default 0.01).
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Maximize F Φ
CV (x, p)

Minimize C (x) (1)

where x = {x1, x2, . . . , xw} is a boolean set of decision variables, i.e. xk ∈ {true, f alse}, k = 1, . . . ,w, being w the
number of attributes of the database. F Φ

CV (x, p) function measures the performance of a learning algorithm Φ trained
with the attributes xk = true, k = 1, . . . ,w, and evaluated with p-fold cross-validation, with 2 ≤ p ≤ T , where T is the
number of instances of the database. C (x) function measures the number of selected attributes, i.e.

C (x) =

w∑
k=1

N(xk)

where N is a function that transforms a boolean value into numeric (true = 1 and f alse = 0). Note that some
performance metrics such as RMSE or MAE (commonly used in regression problems) must be multiplied by −1 so
that the function F Φ

CV (x, p) remain maximized. The problem (1) is therefore a multi-objective boolean optimization
problem where xk = 1 represents that attribute xk is selected, and xk = 0 represents that attribute xk is not selected,
for all k = 1, . . . ,w. The non-dominated solution in the last population with the best fitness for the first objective is
chosen as output.

The methodology proposed in this paper includes 12 multivariate wrapper FS methods that are the result of
combining MultiObjectiveEvolutionarySearch with 6 regression algorithms and 2 performance metrics by using
the evaluator WrapperSubsetEval. We considered for this research the regression algorithms Deep Learning [63]
(Dl4jMlpClassifier in Weka), Gaussian Processes [64] (GaussianProcesses in Weka), k-Nearest Neighbours [65] (IBk
in Weka), Linear Regression [66] (LinearRegression in Weka), Random Forest [67] (RandomForest in Weka) and
Support Vector Machine [68] (SMOreg in Weka), combined with the RMSE and MAE performance metrics [69].
Dl4jMlpClassifier [70] is a deep learning package for the Weka workbench (classification and regression with multi-
layer perceptrons using DeepLearning4J). Following the recommendations of [71] for multivariate time series fore-
casting, we use an architecture with an internal dense layer of 100 output units, with activation function Activa-
tionRELU and loss function LossMSE. GaussianProcesses implements gaussian processes for regression without
hyperparameter-tuning. To make choosing an appropriate noise level easier, this implementation applies normaliza-
tion/standardization to the target attribute as well as the other attributes. We have used the polynomial kernel [72] in
the experiments. IBk is the k-nearest neighbours classifier that is also valid for regression. k-NN is a type of instance-
based learning, or lazy learning. LinearRegression uses linear regression for prediction, with the Akaike criterion
for model selection. RandomForest is an ensemble learning method which constructs a forest of random trees with
controlled variance, for classification or regression purposes. SMOreg implements the support vector machine for
regression. The parameters can be learned using various algorithms. We use support vector machines for regression
using Sequential Minimal Optimization with Shevade et al. adaptation of the stopping criterion [68] and polynomial
kernel.

We have also considered other non-evolutionary FS methods widely used in the literature: Correlation-based
Feature Selection (CFS) [73], Minimum Redundancy Maximum Relevance (mRMR) [74] and Recursive Feature Elim-
ination (RFE) [75]. CFS method evaluates how well each attribute is able to predict the target as well as the similarity
degree between the attributes. In such a way that the feature sets correlated with the target and with features poorly
correlated with each other obtain the higher scores. CFS has been used in this paper in conjunction with the best-first
search strategy [76], which searches the space of attribute subsets by greedy hill-climbing augmented with a back-
tracking facility. We have used the implementation in Weka (BestFirst and CfsSubsetEval classes). mRMR method
ranks the attributes based on their relevance to the target and, at the same time, penalizes their redundancy. Once
the attributes have been ranking, we use sequential forward selection along with random forest to obtain a attribute
subset. RFE method is basically a backward elimination procedure. This technique is an iterative process that begins
by building a model with all the attributes and calculating the importance of each of them. In each iteration the least
important attributes are removed, the model is rebuilt and the importance of each attribute is calculated again. The
optimal subset is used to train the final model. We use support vector machines for regression with kernel radial.
Table 2 summarizes the FS methods used in this paper, indicating the short name, type, search strategy and evaluator
of each of the 15 methods. Table 12 shows the parameters used for each FS method.
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Short name Type Search strategy Evaluator
BF-CFS Filter, Multivariate Best First, Floating Selection Correlation
MOES-DL-MAE Wrapper, Multivariate Multi-objective Evolutionary Deep Learning – MAE
MOES-DL-RMSE Wrapper, Multivariate Multi-objective Evolutionary Deep Learning – RMSE
MOES-GP-MAE Wrapper, Multivariate Multi-objective Evolutionary Gaussian Processes – MAE
MOES-GP-RMSE Wrapper, Multivariate Multi-objective Evolutionary Gaussian Processes – RMSE
MOES-IBk-MAE Wrapper, Multivariate Multi-objective Evolutionary k-Nearest Neighbours – MAE
MOES-IBk-RMSE Wrapper, Multivariate Multi-objective Evolutionary k-Nearest Neighbours – RMSE
MOES-LR-MAE Wrapper, Multivariate Multi-objective Evolutionary Linear Regression – MAE
MOES-LR-RMSE Wrapper, Multivariate Multi-objective Evolutionary Linear Regression – RMSE
MOES-RF-MAE Wrapper, Multivariate Multi-objective Evolutionary Random Forest – MAE
MOES-RF-RMSE Wrapper, Multivariate Multi-objective Evolutionary Random Forest – RMSE
MOES-SMOreg-MAE Wrapper, Multivariate Multi-objective Evolutionary Support Vector Machine – MAE
MOES-SMOreg-RMSE Wrapper, Multivariate Multi-objective Evolutionary Support Vector Machine – RMSE
mRMR-RF Filter + Wrapper, Multivariate Ranking + Forward Selection Redundancy/Relevance + Random Forest – RMSE
RFE-SVM Wrapper, Multivariate Ranking + Backward Selection Support Vector Machine – RMSE

Table 2: Proposed feature selection methods for antibiotic resistance forecasting.

3.3. Forecasting

We have considered three lag lengths (2, 4 and 6) and fifteen FS methods. Each FS method has been applied
to these databases transformed with 2, 4 and 6 lag length, obtaining 3 · 15 = 45 reduced databases. It is important
to indicate that some feature selection methods may not select any lag variable for the output variable. In that case,
the corresponding reduced dataset is discarded from the process. In our experiments, 14 reduced datasets have been
discarded, resulting in a total of 45 − 14 = 31 reduced databases. This gives a total of 3 + 31 = 34 databases (3 trans-
formed databases plus 31 reduced databases). The six regression algorithms Dl4jMlpClassifier, GaussianProcesses,
IBk, LinearRegression, RandomForest and SMOreg have been applied to each of the 34 databases, resulting in a total
of 34 ·6 = 204 forecasting models. 1, 2 and 3 steps-ahead predictions have been made to analyze the 204 models, thus
making a total of 204 · 3 = 612 predictions. All forecasting models have been trained on the first 70% of the instances
and tested on the last 30% of the instances.

Our methodology also makes predictions with autoregressive models using the marima and vars packages. The
vars package [77] fits a VAR model, and the marima package fits MARIMA model using the Spliid’s algorithm [14].
Since VAR model includes only autoregressive terms [78], a VARMA model, which includes both autoregressive and
moving average terms [79], has also been considered. However, the contribution of the moving average component of
the VARMA model was negligible, so only VAR model was taking into account, together with the MARIMA model.

3.4. Statistical tests

The next step in our methodology is to perform statistical tests to detect statistically significant differences between
the reduced databases, on the one hand, and between the regression algorithms, on the other hand. For this, each of
the 6 regression algorithms was executed with each of the 34 databases, and the models obtained were evaluated
with 10-fold cross validation and 1 step-ahead predictions. In order to get statistically meaningful results, the number
of iterations was 10. This means 100 calls of each regression algorithm for each database with training data and
tested against test data . Tables 3 and 4 show the results for the RMSE and MAE metrics, respectively. In order to
identify each database, the databases with 2, 4 and 6 lag length have been named as LL2, LL4 and LL6 respectively.
The reduced databases have been named with the short name of the FS method followed by LL2, LL4 or LL6 as
appropriate. For example, the MOES-DL-RMSE method applied to the LL2 database results in the reduced database
called MOES-DL-RMSE-LL2.

We have performed multiple paired t-tests with significance 0.05 to compare each database with the others, on
the one hand, and each regression algorithm with the others, on the other hand, for both RMSE and MAE metrics.
Afterwards, a ranking test of databases (for RMSE and MAE separately) and a ranking test of regression algorithms
(for RMSE and MAE separately) have been performed. The ranking test ranks the schemes according to the total
number of significant wins and losses against the other schemes. The difference between the number of wins and the
number of losses is used to generate the ranking. Tables 5 and 6 show the ranking test for databases and regression
algorithms, respectively.
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Database Dl4jMlpClassifier GaussianProcesses IBk LinearRegression RandomForest SMOreg
LL2 0.1497 0.1496 0.2169 0.1473 0.1480 0.1473
LL4 0.1542 0.1487 0.2001 0.1606 0.1446 0.1526
LL6 0.1550 0.1504 0.2068 0.1717 0.1436 0.1700
BF-CFS-LL2 0.1458 0.1473 0.2051 0.1398 0.1506 0.1367
BF-CFS-LL4 0.1478 0.1385 0.2033 0.1447 0.1406 0.1390
BF-CFS-LL6 0.1458 0.1353 0.2177 0.1475 0.1413 0.1426
MOES-DL-MAE-LL2 0.1468 0.1478 0.2011 0.1476 0.1480 0.1450
MOES-DL-MAE-LL4 0.1401 0.1389 0.1950 0.1438 0.1500 0.1400
MOES-DL-MAE-LL6 0.1371 0.1401 0.1829 0.1404 0.1375 0.1406
MOES-DL-RMSE-LL2 0.1443 0.1491 0.2017 0.1459 0.1565 0.1423
MOES-DL-RMSE-LL4 0.1395 0.1376 0.2116 0.1469 0.1499 0.1362
MOES-DL-RMSE-LL6 0.1377 0.1452 0.2001 0.1496 0.1505 0.1512
MOES-GP-MAE-LL4 0.1447 0.1357 0.2081 0.1415 0.1378 0.1329
MOES-GP-MAE-LL6 0.1409 0.1319 0.1974 0.1391 0.1388 0.1319
MOES-GP-RMSE-LL2 0.1500 0.1438 0.1950 0.1445 0.1526 0.1438
MOES-GP-RMSE-LL4 0.1443 0.1341 0.1995 0.1370 0.1387 0.1294
MOES-GP-RMSE-LL6 0.1436 0.1313 0.1856 0.1423 0.1394 0.1306
MOES-IBk-MAE-LL4 0.1527 0.1472 0.1540 0.1493 0.1407 0.1495
MOES-IBk-MAE-LL6 0.1561 0.1467 0.1471 0.1602 0.1371 0.1496
MOES-IBk-RMSE-LL6 0.1439 0.1451 0.1530 0.1468 0.1422 0.1487
MOES-LR-MAE-LL4 0.1503 0.1408 0.1821 0.1369 0.1437 0.1362
MOES-LR-MAE-LL6 0.1439 0.1342 0.1951 0.1355 0.1379 0.1351
MOES-LR-RMSE-LL4 0.1476 0.1411 0.1625 0.1351 0.1404 0.1369
MOES-LR-RMSE-LL6 0.1439 0.1342 0.1951 0.1355 0.1379 0.1351
MOES-RF-MAE-LL2 0.1497 0.1486 0.1848 0.1483 0.1444 0.1433
MOES-RF-MAE-LL6 0.1464 0.1368 0.1890 0.1394 0.1307 0.1379
MOES-RF-RMSE-LL2 0.1513 0.1496 0.2022 0.1467 0.1421 0.1470
MOES-SMOreg-MAE-LL4 0.1471 0.1368 0.2139 0.1403 0.1412 0.1304
MOES-SMOreg-MAE-LL6 0.1487 0.1348 0.2178 0.1433 0.1405 0.1310
MOES-SMOreg-RMSE-LL4 0.1492 0.1364 0.1974 0.1388 0.1369 0.1304
MOES-SMOreg-RMSE-LL6 0.1473 0.1324 0.2132 0.1412 0.1396 0.1290
mRMR-RF-LL4 0.1500 0.1515 0.1953 0.1574 0.1494 0.1565
RFE-SVM-LL4 0.1549 0.1478 0.2010 0.1536 0.1441 0.1521
RFE-SVM-LL6 0.1538 0.1413 0.2123 0.1534 0.1415 0.1543

Table 3: Results of RMSE with 10-fold cross-validation, 10 repetitions, 1 step-ahead.

3.5. Multiple criteria decision making

In order to choose the best forecasting model we have considered the 10 best databases identified in the ranking
tests for RMSE and MAE (the union of both sets of databases is a set of 11 databases). As can be seen in Table 5, all
the chosen databases come from a wrapper FS method with the MultiObjectiveEvolutionarySearch search strategy.
Next, we consider the models obtained with the regression algorithm used by the corresponding wrapper FS method
to obtain each of the selected reduced databases. To these 11 forecasting models we add the autoregressive models
corresponding to the MARIMA and VAR methods. Therefore we have a set of n = 13 forecasting models. The next
step in our methodology is to compare the 13 forecasting models to choose the best. For this purpose, we propose the
following multiple criteria decision making process:

Let X = {x1, . . . , xn} a set of n forecasting models. Each forecasting model is a pair (database, algorithm), where
algorithm is either a regression algorithm, or an autoregressive method. We consider the following multi-objective
optimization problem:

Min RMSE(x, i), i = 1, . . . , h
Min MAE(x, i), i = 1, . . . , h (2)

In (2), x ∈ X is a decision variable that represents a forecasting model, and RMSE(x, i) and MAE(x, i) is the
RMSE and MAE respectively of the i steps-ahead prediction in test data (30%) for the forecasting model x (a total of
2 · h objective functions for minimization). Solution of (2) is a set S = {s1, . . . , sm} ⊂ X, m ≤ n, of non-dominated
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Database Dl4jMlpClassifier GaussianProcesses IBk LinearRegression RandomForest SMOreg
LL2 0.1234 0.1221 0.1751 0.1203 0.1229 0.1200
LL4 0.1283 0.1181 0.1626 0.1271 0.1190 0.1196
LL6 0.1269 0.1197 0.1662 0.1356 0.1177 0.1349
BF-CFS-LL2 0.1188 0.1219 0.1661 0.1142 0.1231 0.1096
BF-CFS-LL4 0.1205 0.1106 0.1634 0.1137 0.1138 0.1085
BF-CFS-LL6 0.1200 0.1074 0.1788 0.1153 0.1145 0.1126
MOES-DL-MAE-LL2 0.1190 0.1214 0.1654 0.1197 0.1222 0.1159
MOES-DL-MAE-LL4 0.1164 0.1141 0.1565 0.1182 0.1204 0.1169
MOES-DL-MAE-LL6 0.1106 0.1127 0.1509 0.1106 0.1115 0.1128
MOES-DL-RMSE-LL2 0.1186 0.1240 0.1608 0.1172 0.1287 0.1139
MOES-DL-RMSE-LL4 0.1150 0.1130 0.1713 0.1210 0.1216 0.1119
MOES-DL-RMSE-LL6 0.1133 0.1169 0.1686 0.1188 0.1233 0.1212
MOES-GP-MAE-LL4 0.1205 0.1073 0.1705 0.1122 0.1110 0.1033
MOES-GP-MAE-LL6 0.1149 0.1034 0.1572 0.1100 0.1122 0.1039
MOES-GP-RMSE-LL2 0.1250 0.1191 0.1517 0.1182 0.1270 0.1178
MOES-GP-RMSE-LL4 0.1189 0.1068 0.1603 0.1089 0.1122 0.0989
MOES-GP-RMSE-LL6 0.1171 0.1038 0.1511 0.1122 0.1138 0.1023
MOES-IBk-MAE-LL4 0.1265 0.1198 0.1207 0.1205 0.1167 0.1183
MOES-IBk-MAE-LL6 0.1286 0.1191 0.1181 0.1321 0.1122 0.1199
MOES-IBk-RMSE-LL6 0.1172 0.1176 0.1278 0.1179 0.1156 0.1181
MOES-LR-MAE-LL4 0.1239 0.1160 0.1444 0.1095 0.1169 0.1076
MOES-LR-MAE-LL6 0.1188 0.1060 0.1624 0.1054 0.1110 0.1056
MOES-LR-RMSE-LL4 0.1222 0.1157 0.1293 0.1074 0.1127 0.1074
MOES-LR-RMSE-LL6 0.1188 0.1060 0.1624 0.1054 0.1110 0.1056
MOES-RF-MAE-LL2 0.1232 0.1217 0.1496 0.1193 0.1199 0.1118
MOES-RF-MAE-LL6 0.1210 0.1081 0.1499 0.1093 0.1035 0.1087
MOES-RF-RMSE-LL2 0.1265 0.1236 0.1606 0.1194 0.1184 0.1174
MOES-SMOreg-MAE-LL4 0.1201 0.1096 0.1718 0.1119 0.1150 0.0991
MOES-SMOreg-MAE-LL6 0.1223 0.1062 0.1728 0.1136 0.1135 0.1007
MOES-SMOreg-RMSE-LL4 0.1233 0.1090 0.1601 0.1104 0.1118 0.0992
MOES-SMOreg-RMSE-LL6 0.1209 0.1036 0.1703 0.1115 0.1140 0.0996
mRMR-RF-LL4 0.1243 0.1242 0.1618 0.1281 0.1248 0.1263
RFE-SVM-LL4 0.1274 0.1174 0.1624 0.1210 0.1188 0.1185
RFE-SVM-LL6 0.1281 0.1128 0.1710 0.1215 0.1157 0.1245

Table 4: Results of MAE with 10-fold cross-validation, 10 repetitions, 1 step-ahead.

(or Pareto) solutions [80]. In order to choose a solution s∗ ∈ S , we take into account the sum of the values of RMSE
and MAE in the 1, 2 and 3 steps-ahead, together with the sum of the slopes (in absolute value) of the prediction lines
evaluated with RMSE and MAE in 1, 2 and 3 steps-ahead. Algorithm 1 describes the full multiple criteria decision
making process.

Solving the problem (2) we have obtained a set S = {s1, s2} composed of 2 non-dominated solutions. The first
solution s1 is the regression model obtained with GaussianProcesses and the reduced database obtained with the
wrapper FS method MOES-GP-RMSE from the transformed dataset with 6 lag length. The second solution s2 is the
autoregressive model obtained with MARIMA. Table 7 shows the RMSE and MAE of each solution in the 1, 2 and 3
steps-ahead. In addition, Table 7 shows the value v j of each solution s j, j = 1, 2, calculated by the algorithm 1. The
solution s1 is chosen as the best solution. This is because, in addition to having the lowest sum of RMSE and MAE
in the 1, 2 and 3 steps-ahead predictions, the prediction lines of RMSE and MAE in the 1, 2 and 3 steps-ahead have
a minimum sum of its slopes. This can be seen graphically in Figures ?? and ??. In this way, the multiple criteria
decision-making process takes into account the following aspects:

1. Multi-objective optimization problem (2), which identifies the best solutions in each step-ahead for both RMSE
and MAE metrics.

2. The following criteria and aggregation operators are taken into account to distinguish between non-dominated
solutions:

(a) The joint optimality of the solution in all steps ahead. For this, we use the addition operator, in both RMSE
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RMSE
Rank Database Wins Losses Difference

1 MOES-GP-RMSE-LL4 46 4 42
2 MOES-GP-MAE-LL6 46 5 41
3 MOES-SMOreg-RMSE-LL6 42 5 37
4 MOES-GP-RMSE-LL6 39 3 36
5 MOES-RF-MAE-LL6 43 7 36
6 MOES-SMOreg-RMSE-LL4 41 6 35
7 MOES-LR-RMSE-LL4 39 5 34
8 MOES-LR-MAE-LL6 37 4 33
9 MOES-LR-RMSE-LL6 37 4 33

10 MOES-GP-MAE-LL4 28 4 24
11 MOES-SMOreg-MAE-LL4 31 7 24
12 MOES-DL-MAE-LL6 28 7 21
13 MOES-SMOreg-MAE-LL6 27 11 16
14 MOES-IBk-RMSE-LL6 29 16 13
15 MOES-LR-MAE-LL4 16 5 11
16 MOES-DL-RMSE-LL4 23 15 8
17 BF-CFS-LL4 19 12 7
18 BF-CFS-LL6 18 11 7
19 MOES-DL-MAE-LL4 19 12 7
20 MOES-IBk-MAE-LL4 31 32 -1
21 MOES-IBk-MAE-LL6 39 41 -2
22 BF-CFS-LL2 12 22 -10
23 MOES-GP-RMSE-LL2 5 20 -15
24 MOES-RF-MAE-LL2 3 23 -20
25 MOES-DL-RMSE-LL6 11 35 -24
26 MOES-RF-RMSE-LL2 1 26 -25
27 MOES-DL-MAE-LL2 1 29 -28
28 LL2 1 41 -40
29 RFE-SVM-LL4 3 43 -40
30 RFE-SVM-LL6 3 44 -41
31 MOES-DL-RMSE-LL2 3 47 -44
32 LL4 2 48 -46
33 mRMR-RF-LL4 0 53 -53
34 LL6 1 77 -76

MAE
Rank Database Wins Losses Difference

1 MOES-GP-RMSE-LL4 58 5 53
2 MOES-RF-MAE-LL6 58 6 52
3 MOES-SMOreg-RMSE-LL6 55 5 50
4 MOES-SMOreg-RMSE-LL4 52 5 47
5 MOES-GP-MAE-LL6 52 6 46
6 MOES-GP-RMSE-LL6 47 3 44
7 MOES-LR-MAE-LL6 46 4 42
8 MOES-LR-RMSE-LL6 46 4 42
9 MOES-GP-MAE-LL4 43 5 38
10 MOES-SMOreg-MAE-LL6 45 8 37
11 MOES-SMOreg-MAE-LL4 43 8 35
12 MOES-LR-RMSE-LL4 40 11 29
13 MOES-DL-MAE-LL6 37 16 21
14 BF-CFS-LL4 24 14 10
15 MOES-IBk-RMSE-LL6 30 20 10
16 BF-CFS-LL6 24 17 7
17 MOES-IBk-MAE-LL4 29 27 2
18 MOES-LR-MAE-LL4 14 13 1
19 MOES-IBk-MAE-LL6 37 49 -12
20 MOES-DL-MAE-LL4 6 21 -15
21 MOES-DL-RMSE-LL4 12 27 -15
22 BF-CFS-LL2 9 26 -17
23 MOES-RF-MAE-LL2 2 20 -18
24 MOES-DL-RMSE-LL6 10 33 -23
25 MOES-RF-RMSE-LL2 1 28 -27
26 MOES-DL-MAE-LL2 1 39 -38
27 MOES-GP-RMSE-LL2 0 38 -38
28 RFE-SVM-LL4 3 41 -38
29 RFE-SVM-LL6 5 44 -39
30 LL4 2 50 -48
31 MOES-DL-RMSE-LL2 2 51 -49
32 LL2 0 52 -52
33 LL6 2 66 -64
34 mRMR-RF-LL4 0 73 -73

Table 5: Ranking of databases for RMSE and MAE metrics with 10-fold cross-validation, 10 repetitions, 1 step-ahead.

RMSE
Rank Regression algorithm Wins Losses Difference

1 GaussianProcesses 46 0 46
2 SMOreg 42 3 39
3 RandomForest 37 3 34
4 LinearRegression 33 12 21
5 Dl4jMlpClassifier 31 19 12
6 IBk 0 152 -152

MAE
Rank Regression algorithm Wins Losses Difference

1 SMOreg 61 3 58
2 GaussianProcesses 52 6 46
3 RandomForest 36 9 27
4 LinearRegression 37 13 24
5 Dl4jMlpClassifier 30 35 -5
6 IBk 0 150 -150

Table 6: Ranking of regression algorithms for RMSE and MAE metrics with 10-fold cross-validation, 10 repetitions, 1 step-ahead.

and MAE metrics separately.
(b) The robustness of the forecasting model along all steps ahead. For this, we use the sum of the slopes of the

prediction lines (in absolute value) between every two steps ahead, again in both RMSE and MAE metrics
separately.

(c) The optimality and robustness of the forecasting model are aggregated into a single function by means of
the the multiplication operator (step 8 of Algorithm 1).

4. Analysis of results and discussion

The best solution with our methodology comes from applying the MOES-GP-RMSE method on the transformed
database LL6. Figure 4 shows the evolution of the average hypervolume ratio [62] over 10 runs of the MOES-GP-
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Algorithm 1 Multiple criteria decision making.

Require: X = {x1, . . . , xn} {Set of n forecasting models}
Require: h {Number of steps ahead}

1: S = {s1, . . . , sm} ← Solution of the multi-objective optimization problem (2)
2: RMSE′(s j, i)← Normalized RMSE(s j, i), j = 1, . . . ,m, i = 1, . . . , h
3: MAE′(s j, i)← NormalizedMAE(s j, i), j = 1, . . . ,m, i = 1, . . . , h

4: sRMS E j ←

h∑
i=1

RMSE′(s j, i), j = 1, . . . ,m

5: sMAE j ←

h∑
i=1

MAE′(s j, i), j = 1, . . . ,m

6: mRMS E j ←

h−1∑
i=1

∣∣∣RMSE′(s j, i + 1) − RMSE′(s j, i)
∣∣∣, j = 1, . . . ,m

7: mMAE j ←

h−1∑
i=1

∣∣∣MAE′(s j, i + 1) −MAE′(s j, i)
∣∣∣, j = 1, . . . ,m

8: v j ← sRMS E j · mRMS E j + sMAE j · mMAE j, j = 1, . . . ,m

9: s∗ ← smin | vmin =
m

min
j=1
{v j}

10: return s∗

RMSE MAE
Database / Algorithm 1 step-ahead 2 steps-ahead 3 steps-ahead 1 step-ahead 2 steps-ahead 3 steps-ahead Dominated v j

MOES-GP-MAE-LL4 / GaussianProcesses 0.1434 0.1382 0.1405 0.1107 0.1059 0.1091 Yes –
MOES-GP-MAE-LL6 / GaussianProcesses 0.1394 0.1346 0.1367 0.1046 0.1000 0.1027 Yes –
MOES-GP-RMSE-LL4 / GaussianProcesses 0.1430 0.1387 0.1410 0.1094 0.1051 0.1085 Yes –
MOES-GP-RMSE-LL6 / GaussianProcesses (s1) 0.1349 0.1304 0.1325 0.1003 0.0960 0.0987 No v1 = 0.0030 *
MOES-LR-MAE-LL6 / LinearRegression 0.1413 0.1367 0.1377 0.1056 0.1012 0.1011 Yes –
MOES-LR-RMSE-LL4 / LinearRegression 0.1413 0.1367 0.1377 0.1056 0.1012 0.1011 Yes –
MOES-LR-RMSE-LL6 / LinearRegression 0.1413 0.1367 0.1377 0.1056 0.1012 0.1011 Yes –
MOES-RF-MAE-LL6 / RandomForest 0.1486 0.1395 0.1417 0.1157 0.1090 0.1120 Yes –
MOES-SMOreg-MAE-LL6 / SMOreg 0.1580 0.1525 0.1546 0.1187 0.1135 0.1154 Yes –
MOES-SMOreg-RMSE-LL4 / SMOreg 0.1560 0.1497 0.1518 0.1173 0.1118 0.1135 Yes –
MOES-SMOreg-RMSE-LL6 / SMOreg 0.1514 0.1473 0.1497 0.1138 0.1096 0.1122 Yes –
Original / MARIMA (s2) 0.1463 0.1352 0.1305 0.1204 0.1078 0.1074 No v2 = 0.0232
Original / VAR 0.1628 0.1715 0.1590 0.1342 0.1352 0.1293 No –

Table 7: Results of the multi-criteria decision making applied to the best databases obtained from statistical tests together with the MARIMA and
VAR autoregressive models.

RMSE method with LL6. The hypervolume is defined as the volume of the search space dominated by a population
P, and is formulated as:

HV (P) =

|Q|⋃
i=1

vi (3)

where Q ⊆ P is the set of non-dominated individuals of P, and vi is the volume of the individual i. Subsequently, the
hypervolume ratio (HVR) is defined as the ratio of the volume of the non-dominated search space over the volume of
the entire search space, and is formulated as follows:

HVR (P) = 1 −
HV (P)

VS
(4)

where VS is the volume of the search space. Computing HVR requires reference points that identify the maximum
and minimum values for each objective. For optimization problem (2), the following reference points (Fmin, Cmin) and
(Fmax, Cmas) are set:

Fmin = 0, Fmax = max
k
F Φ

k , k = 1, . . . ,w, Cmin = 1, Cmax = w
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Figure 3: RMSE (a) and MAE (b) in 1, 2 and 3 steps-ahead of the non-dominated solutions.

where F Φ
k is the error (RMSE or MAE as appropriate) of the regression algorithm Φ over the database composed by

only one attribute k. Note that if any individual of the population has a worst value than Fmax, then that individual
is not taken into account in the calculation of the hypervolume because it is dominated by the point with objective
values (Fmax, Cmin). The table 8 shows statistics for the hypervolume obtained with 10 runs of algorithm (minimum,
maximum, mean, standard deviation of mean, confidence interval for the mean). Figure 5 shows the Pareto front of
the run with seed 1 corresponding to the solution considered in this paper. The selected solution is the one with the
lowest F Φ

CV (solution with 11 attributes in Figure 5).

Figure 4: Evolution of the average hypervolume ratio with 10 runs of MOES-GP-RMSE with the transformed database LL6.

In order to further analyze the effectiveness of the FS process, we compared the best forecasting model ob-
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Minimum Maximum Mean S.D. C.I. Low C.I. High
ENORA 0.6833 0.6992 0.6930 0.0049 0.6895 0.6965
S.D. = Standard deviation of mean
C.I. = Confidence interval for the mean (95%)

Table 8: Statistics for the hypervolume ratio obtained with 10 runs of MOES-GP-RMSE with the transformed database LL6.

Figure 5: Pareto front found by MOES-GP-RMSE with the transformed database LL6, run with seed 1.

tained with our proposal (solution s1) with the regression model obtained without applying feature selection from LL6
database (6 lag length transformed database) and the GaussianProcesses algorithm. Figures 6 and 7 graphically show
the predictions in 1 to 6 steps-ahead in test data for both models (Figure 6 without feature selection, and Figure 7 with
feature selection). Tables 9 and 10 show numerical results for predictions in 1 to 6 steps-ahead in test data for both
models respectively, including number of evaluated instances, RMSE, MAE and MAPE (mean absolute percentage
error) for each step-ahead. The following statements can be made:

1. The solution with feature selection dominates the solution without feature selection for the multi-objective
optimization problem (2) with p = 6.

2. Solution without feature selection obtained RMSE= (0.1733, 0.1752, 0.1740) and MAE= (0.1349, 0.1426,
0.1461). This means that the feature selection process has reduced the RMSE by 23.17%, and the MAE has
been reduced by 30.36%.

3. In addition to being more accurate, the regression model obtained with feature selection is more robust, since
the predictions in 1, 2, 3 and 4 steps-ahead are the same. Note that, in the graph of Figure 7, the prediction
lines in 2, 3 and 4 steps-ahead are covered by the prediction line in the 1 step-ahead. However, Table 7 shows
different RMSE, MAE and MAPE values for the predictions in 1, 2, 3 and 4 steps-ahead, since, in 2 steps-ahead,
one instance is evaluated less than in 1 step-ahead, in 3 steps-ahead, two less instances are evaluated, and in 4
steps-ahead, three less instances are evaluated.

Table 11 shows the selected attributes with MOES-GP-RMSE from LL6 and their ranks and importances. The rank
and importance of the attributes has been obtained through a univariate wrapper feature ranking method GaussianPro-
cesses regression algorithm and RMSE metric have been used to evaluate separately each attribute. For this we have
used the Weka class ClassifierAttributeEval which evaluates attributes using a learning scheme. With the parameter
leaveOneAttributeOut = false, an attribute is evaluated considering its worth in isolation, i.e., a model is built through
GaussianProcesses with only the attribute to evaluate and the output attribute, and its RMSE is calculated. When all

15



1,2,3,4,5,6 step-ahead predictions for Staphylococcus.aureus.meticilin.resistant
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Figure 6: Graphical results of 1 to 6 steps-ahead predictions with gaussian processes for Staphylococcus aureus meticilin resistant evaluated on
test data with 6 lag length transformed dataset.

Evaluation 1-step-ahead 2-steps-ahead 3-steps-ahead 4-steps-ahead 5-steps-ahead 6-steps-ahead
Test data
Number of instances 32 31 30 29 28 27
RMSE 0.18 0.1744 0.1753 0.1749 0.1804 0.1834
MAE 0.1386 0.1334 0.1357 0.1358 0.1417 0.1436
MAPE 41.9744 41.4884 42.6367 42.9067 45.2733 47.4543

Table 9: 1 to 6 steps-ahead predictions with gaussian processes for Staphylococcus aureus meticilin resistant evaluated on test data with LL6
transformed dataset.

Evaluation 1-step-ahead 2-steps-ahead 3-steps-ahead 4-steps-ahead 5-steps-ahead 6-steps-ahead
Test data
Number of instances 32 31 30 29 28 27
RMSE 0.1349 0.1304 0.1325 0.1347 0.1395 0.1421
MAE 0.1003 0.096 0.0987 0.101 0.1094 0.1129
MAPE 28.5268 28.1986 28.9901 29.721 33.3479 36.1422

Table 10: 1 to 6 steps-ahead predictions with gaussian processes for Staphylococcus aureus meticilin resistant evaluated on test data with MOEA-
GP-RMSE-LL6 reduced dataset.

the attributes are evaluated, a change of scale is carried out so that the attributes whose resulting RMSE is better than
the resulting RMSE of the model with only the output attribute, are assigned a positive merit (importance), and those
attributes with worse resulting RMSE that of the model with only the output attribute, are assigned a negative merit.

The reflection on the selected attributes and their ranks shows their suitability to explain the epidemiological
relationships between the five time series. We mentioned these relationships when justifying the choice for the study
of these five series. The epidemic period of each influenza season is considered to be the period corresponding to the
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1,2,3,4,5,6 step-ahead predictions for Staphylococcus.aureus.meticilin.resistant
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Figure 7: Graphical results of 1 to 6 steps-ahead predictions with gaussian processes for Staphylococcus aureus meticilin resistant evaluated on
test data with the reduced dataset MOES-GP-RMSE-LL6 from 6 lag length transformed dataset.

Rank Attribute name Importance
1 Lag Influenza-4 0.0020182
2 Levofloxacin 0.0014092
3 Lag Levofloxacin-2 0.0011283
4 Influenza 0.0007227
5 Lag Staphylococcus.aureus.meticilin.resistant-5 0.0004896
6 Lag Staphylococcus.aureus.meticilin.resistant-4 0.0002825
7 Lag Staphylococcus.aureus.meticilin.resistant-6 0.0002069
8 Lag Staphylococcus.aureus.meticilin.sensible-1 -0.0000752
9 Lag Levofloxacin-5 -0.0003103

10 Lag Staphylococcus.aureus.meticilin.sensible-3 -0.0006595
11 Lag Oseltamivir-1 -0.0011502

Table 11: Selected attributes with MOES-GP-RMSE from LL6, and their ranks.

epidemiological weeks in which the incidence of influenza exceeds the baseline threshold of activity. The baseline
is estimated nationally using the mobile epidemic model [81] and is used to determine the beginning and end of
the seasonal influenza wave. Let us think of a theoretical epidemic period in which we place the different attributes
provided by the mathematical model in a temporary order. With this temporal arrangement, the Lag Influenza-4 would
represent the beginning of the epidemic period. Regarding this beginning, the mathematical model proposes that:

• The incidence of MRSA before the onset of the influenza period (Lag Staphylococcus.aureus.meticilin.resistant-
6 and Lag Staphylococcus.aureus.meticilin.resistant-5) and at the onset of influenza (Lag Staphylococcus.-
aureus.meticilin.resistant-4) are important attributes for predicting the incidence of MRSA.
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• The use of Levofloxacin c© is important for predicting the incidence of MRSA prior to and during the influenza
period (Lag Levofloxacin-5). During the whole influenza period its importance in predicting the incidence of
MRSA increases (Lag Levofloxacin-2) and maintains (Levofloxacin).

• SA, coinciding with the increased prescription of Levofloxacin c© during the influenza episode, increases its
predictive importance in the model (Lag Staphylococcus.aureus.meticilin.sensible-3 and Lag Staphylococcus.-
aureus.meticilin.sensible-1).

• The Osaltamivir c© is of the attributes considered, the least important (Lag Oseltamivir-1). This proposed math-
ematical model reading is easily translatable into clinical terminology: when a stable context of Levofloxacin c©

consumption and MRSA incidence are broken at the expense of an increase in the prescription of Levofloxacin c©,
an imbalance occurs in the MRSA – SA relationship resulting in an increase in the incidence of MRSA. Sea-
sonal episodes of influenza recreate this situation

From a clinical point of view, our work has evident limitations and shortcomings; for example, the failure to
consider the use of other antibiotics or the failure to consider surveillance samples for MRSA. Certainly, the objective
was not clinical but the demonstration of the improvement in the prediction capacity provided by the model and
together with it, to show the adequacy of the mathematical model proposed to the epidemiological and clinical reality.
In particular, the latter has benefited from the choice of ad hoc time series.

This last peculiarity of our work, contrary to what one might think at first glance, is one of its contributions.
Since it is a mathematical model of clinical observation, on the one hand, it can be easily understood and, on the
other hand, it allows the conclusions drawn from the model to be translated directly into concrete clinical actions.
Different studies have reported that interventions aimed to reduce the use of antibiotics are related to a reduction in
MRSA infection rates [82]. The effectiveness of prevention and hygiene measures are also well-established [83].
The concrete conclusion of our work is the recommendation to reduce the use of levofloxacin and, by extension, all
fluoroquinolone antibiotics, particularly in seasonal peaks of use. Our data support the observation that the temporary
increase in the use of a fluoroquinolone drug (in our case, Levofloxacin) precedes a temporary increase in MRSA
and this association is reproduced by suggesting a causal relationship. The impact of this observation is greater in
the context of outpatient setting, as the incidence of community-acquired MRSA is progressively increasing over the
last century [84, 85], coexisting with a high intake of fluoroquinolone antibiotics, despite warnings about the adverse
effects of these antibiotics and consequent recommendation to restrict their prescription [86]. Our study adds, to the
argument based on the adverse effects of fluoroquinolone antibiotics, their direct implication in the temporary increase
in the incidence of MRSA due to seasonal overuse of fluoroquinolone antibiotics. The significance of this contribution
can be deduced from the figures that delimit the problem. In the late 1960s, MRSA was considered endemic in
hospitals, but it appeared quickly and unexpectedly in communities in the 1990s and now prevails throughout the
world [87, 88]. The mortality rate associated with invasive MRSA for hospital-onset cases is approximately 29% and
19% for community-onset cases [84].

5. Conclusions

In this paper, we proposed a methodology for antibiotic-resistant forecasting based on feature selection with lagged
variables via database transformation. Different wrapper feature selection methods with multi-objective evolutionary
search strategy have been used to identify the most relevant lagged variables. Gaussian processes together with
the RMSE metric on a database with 6 lagged variables have produced the best solution on a total of 206 different
forecasting models. In order to choose the best forecasting model, in this paper we have proposed a multiple criteria
decision-making process, under which a multi-objective problem is optimized where the RMSE and MAE metrics in
different steps-ahead predictions are defined as problem objectives. The robustness of the forecasting models along
the steps-ahead predictions is also taken into account. The results show that the forecasting model obtained by feature
selection improves by 23.17% and by 30.36% the RMSE and MAE respectively of the forecasting model without
applying feature selection, as well as its robustness in the 1, 2 and 3 steps-ahead predictions.

In our opinion, the methodology developed has two fields of application in clinical epidemiology. One, to make
predictions that optimise surveillance systems and, therefore, prevention. Two, as a knowledge acquisition tool for the
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interpretation of the complex relationships between time series, particularly those related to the monitoring of antibi-
otic consumption and the incidence of micro-organisms and their resistances. The proposed mathematical model can
provide more objectivity and quantification capabilities to the visual analysis of the temporal series carried out by epi-
demiologist experts. Furthermore, the models and the selected variables, make possible to extract knowledge from the
temporal series. Predictions of future infections outbreaks allow the reallocation of resources (scarce and insufficient)
to control de infection and avoid its propagation. Finally, in a context with a high probability of an outbreak according
to predictions, epidemiological active surveillance techniques could adjust its sensitivity and specificity improving the
outbreak early diagnosis.

Among future works, the use of information regarding doses is to be approached. Other open lines are related
to the automation of the methodology proposed, including an automatic selection of the time series relevant for
forecasting. We are currently working on a multi-objective evolutionary algorithm to simultaneously optimize the
lag length, select attributes and find the best regression algorithm (ensemble learning) at prediction intervals [89].
Finally, to make possible the integration of the process in clinical practice, providing results in terms of probability
and confidence intervals are going to be tackled.
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[27] F. Jiménez, H. Pérez-Sánchez, J. Palma, G. Sánchez, C. Martı́nez, A methodology for evaluating multi-objective evolutionary feature selection
for classification in the context of virtual screening, Soft Computing 23 (18) (2019) 8775–8800.
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Appendix

Name Parameters
Weka

MultiObjectiveEvolutionarySearch -generations 100 -population-size 100 -seed 1 -algorithm 0 -report-frequency 100
Dl4jMlpClassifier -S 1 -cache-mode MEMORY -early-stopping

“weka.dl4j.earlystopping.EarlyStopping
-maxEpochsNoImprovement 0 -valPercentage 0.0”
-normalization “Standardize training data”
-iterator “weka.dl4j.iterators.instance.DefaultInstanceIterator
-bs 1” -iteration-listener “weka.dl4j.listener.EpochListener
-eval true -n 5” -layer “weka.dl4j.layers.DenseLayer
-nOut 100 -activation “weka.dl4j.activations.ActivationReLU”
-name “Dense layer”” -layer “weka.dl4j.layers.OutputLayer
-lossFn “weka.dl4j.lossLossMSE”
-nOut 1 -activation “weka.dl4j.activations.ActivationReLU”
-name “Output layer”” -config “weka.dl4j.NeuralNetConfiguration
-biasInit 0.0 -biasUpdater “weka.dl4j.updater.Sgd
-lr 0.001 -lrSchedule “weka.dl4j.schedules.ConstantSchedule
-scheduleType EPOCH”” -dist “weka.dl4j.distribution.Disabled”
-dropout “weka.dl4j.dropout.Disabled”
-gradientNormalization None -gradNormThreshold 1.0
-l1 NaN -l2 NaN -minimize -algorithm STOCHASTIC GRADIENT DESCENT
-updater “weka.dl4j.updater.Adam -beta1MeanDecay 0.9
-beta2VarDecay 0.999 -epsilon 1.0E-8 -lr 0.001
-lrSchedule “weka.dl4j.schedules.ConstantSchedule
-scheduleType EPOCH”” -weightInit XAVIER
-weightNoise “weka.dl4j.weightnoise.Disabled””
-numEpochs 10 -queueSize 0 -zooModel “weka.dl4j.zoo.CustomNet”

GaussianProcesses -L 1.0 -N 0 -K “weka.classifiers.functions.supportVector.PolyKernel
-E 1.0 -C 250007” -S 1

IBk -K 1 -W 0 -A “weka.core.neighboursearch.LinearNNSearch
-A “weka.core.EuclideanDistance -R first-last””

LinearRegression -S 0 -R 1.0E-8 -num-decimal-places 4
RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1
SMOreg -C 1.0 -N 0 -I “weka.classifiers.functions.supportVector.RegSMOImproved

-T 0.001 -V -P 1.0E-12 -L 0.001 -W 1”
-K “weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007”

R
rfe functions=caretFuncs, method=“cv”, number = 5
rfeControl method=“svmRadial”, subsets = c(2:length(dataset)), preProcess=c(“center”,“scale”)
mRMR.classic defaults
trainControl (Random forest) method = “cv”, number=10, tuneLength=10

Table 12: Parameters of the feature selection methods and related functions.
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Name Description
Weka

weka.classifiers.timeseries.core.TSLagMaker Class for creating lagged versions of target variable(s) for use in time series forecasting
weka.attributeSelection Package for feature selection
weka.attributeSelection.AttributeSelection Class for feature selection
weka.attributeSelection.ASSearch Abstract class for search strategy
weka.attributeSelection.ASEvaluation Abstract class for evaluation
weka.attributeSelection.MultiObjectiveEvolutionarySearch Class for multi-objective evolutionary search strategy, extends ASSearch
weka.attributeSelection.WrapperSubsetEval Class for multivariate wrapper feature selection methods, extends ASEvaluation
weka.classifiers.AbstractClassifier Abstract classifier
weka.classifiers.functions.Dl4jMlpClassifier A wrapper for DeepLearning4j that can be used to train a multi-layer perceptron using that library,

extends weka.classifiers.RandomizableClassifier
weka.classifiers.functions.GaussianProcesses Class for using Gaussian processes for regression, extends weka.classifiers.RandomizableClassifier
weka.classifiers.lazy.IBk Class that implements an instance-based learning algorithm, extends weka.classifiers.Classifier
weka.classifiers.functions.LinearRegression Class for using linear regression for prediction, extends weka.classifiers.AbstractClassifier
weka.classifiers.trees.RandomForest Class for constructing a forest of random trees, extends weka.classifiers.meta.Bagging
weka.classifiers.functions.SMOreg Class for using support vector machines for regression, extends weka.classifiers.AbstractClassifier
weka.classifiers.timeseries.WekaForecaster Class that implements time series forecasting using a Weka regression scheme

R
caret Package (short for Classification And REgression Training) is a set of functions for creating predictive models
rfe Function of the caret package that performs an Recursive Feature Elimination method for feature selection
mRMRe Package for Parallelized Minimum Redundancy, Maximum Relevance Ensemble Feature Selection
mRMR.classic Function of the mRMRe package that performs an mRMR feature selection

Table 13: Weka and R packages, classes and functions used in this paper.
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