Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.artmed.2020.101818

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorJiménez Barrionuevo, Fernando-
dc.contributor.authorPalma Méndez, José Tomás-
dc.contributor.authorSánchez, Gracia-
dc.contributor.authorMarín, David-
dc.contributor.authorPalacios, Francisco-
dc.contributor.authorLópez, Lucia-
dc.date.accessioned2025-01-18T19:05:25Z-
dc.date.available2025-01-18T19:05:25Z-
dc.date.issued2020-04-
dc.identifier.citationArtificial Intelligence In Medicine, 104 (2020) 101818es
dc.identifier.urihttp://hdl.handle.net/10201/148741-
dc.description.abstractAAntimicrobial resistance has become one of the most important health problems and global action plans have been proposed globally. Prevention plays a key role in these actions plan and, in this context, we propose the use of Artificial Intelligence, specifically Time Series Forecasting techniques, for predicting future outbreaks of Methicillin-resistant Staphylococcus aureus (MRSA). Infection incidence forecasting is approached as a Feature Selection based Time Series Forecasting problem using multivariate time series composed of incidence of Staphylococcus aureus Methicillin-sensible and MRSA infections, influenza incidence and total days of therapy of both of Levofloxacin and Oseltamivir antimicrobials. Data were collected from the University Hospital of Getafe (Spain) from January 2009 to January 2018, using months as time granularity. The main contributions of the work are the following: the applications of wrapper feature selection methods where the search strategy is based on multi-objective evolutionary algorithms (MOEA) along with evaluators based on the most powerful state-ofthe-art regression algorithms. The performance of the feature selection methods has been measured using the root mean square error (RMSE) and mean absolute error (MAE) performance metrics. A novel multi-criteria decision- making process is proposed in order to select the most satisfactory forecasting model, using the metrics previously mentioned, as well as the slopes of model prediction lines in the 1, 2 and 3 steps-ahead predictions. The multi-criteria decision-making process is applied to the best models resulting from a ranking of databases and regression algorithms obtained through multiple statistical tests. Finally, to the best of our knowledge, this is the first time that a feature selection based multivariate time series methodology is proposed for antibiotic resistance forecasting. Final results show that the best model according to the proposed multi-criteria decision making process provides a RMSE=(0.1349, 0.1304, 0.1325) and a MAE=(0.1003, 0.096, 0.0987) for 1, 2, and 3 steps-ahead predictions.es
dc.formatapplication/pdfes
dc.format.extent16es
dc.languageenges
dc.publisherElsevieres
dc.relationThis work was partially funded by the SITSUS project (Ref: RTI2018-094832-B-I00), given by the Spanish Ministry of Science, Innovation and Universities (MCIU), the Spanish Agency for Research (AEI) and by the European Fund for Regional Development (FEDER). This work was also partially supported by the Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia under Project 20988/PI/18.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFeature Selectiones
dc.subjectAntibiotic resistancees
dc.subjectMultivariate time serieses
dc.subjectAntibiotic resistance forecastinges
dc.subjectMultiple criteria decision makinges
dc.subject.otherCDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática.::004.9 - Técnicas basadas en el ordenador orientadas a aplicacioneses
dc.titleFeature selection based multivariate time series forecasting: An application to antibiotic resistance outbreaks predictiones
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0933365719306608?via%3Dihubes
dc.identifier.doihttps://doi.org/10.1016/j.artmed.2020.101818-
dc.contributor.departmentDepartamento de Ingeniería de la Información y las Comunicaciones-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
AIIM2019 - V2[82].pdf1,32 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons