Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.jdent.2023.104556

Título: Federated vs local vs central deep learning of tooth segmentation on panoramic radiographs
Fecha de publicación: 18-may-2023
Editorial: Elsevier
Cita bibliográfica: Journal of Dentistry 135 (2023) 104556
ISSN: Print: 0300-5712
Electronic: 1879-176X
Palabras clave: Artificial intelligence
Big data
Computer vision
Deep learning
Informatics
Mathematical models
Resumen: Objective: Federated Learning (FL) enables collaborative training of artificial intelligence (AI) models from multiple data sources without directly sharing data. Due to the large amount of sensitive data in dentistry, FL may be particularly relevant for oral and dental research and applications. This study, for the first time, employed FL for a dental task, automated tooth segmentation on panoramic radiographs. Methods: We employed a dataset of 4,177 panoramic radiographs collected from nine different centers (n = 143 to n = 1881 per center) across the globe and used FL to train a machine learning model for tooth segmentation. FL performance was compared against Local Learning (LL), i.e., training models on isolated data from each center (assuming data sharing not to be an option). Further, the performance gap to Central Learning (CL), i.e., training on centrally pooled data (based on data sharing agreements) was quantified. Generalizability of models was evaluated on a pooled test dataset from all centers. Results: For 8 out of 9 centers, FL outperformed LL with statistical significance (p<0.05); only the center providing the largest amount of data FL did not have such an advantage. For generalizability, FL outperformed LL across all centers. CL surpassed both FL and LL for performance and generalizability. Conclusion: If data pooling (for CL) is not feasible, FL is shown to be a useful alternative to train performant and, more importantly, generalizable deep learning models in dentistry, where data protection barriers are high. Clinical Significance: This study proves the validity and utility of FL in the field of dentistry, which encourages researchers to adopt this method to improve the generalizability of dental AI models and ease their transition to the clinical environment.
Autor/es principal/es: Schneider, Lisa
Rischke, Roman
Krois, Joachim
Krasowki, Aleksander
Büttmer, Martha
Mohammad-Rahimi, Hossein
Chaurasai, Akhilanand
Pereira, Nielsen, S.
Lee, Jae-hong
Uribe, Sergio E.
Shahab, Shahriar
Birke Koca-Ünsal, Revan
Ünsal, Gürkan
Martínez Beneyto, Yolanda
Brinz, Janet
Tryfonos, Olga
Schwendicke, Falk
Versión del editor: https://www.sciencedirect.com/science/article/pii/S0300571223001422?via%3Dihub
URI: http://hdl.handle.net/10201/147803
DOI: https://doi.org/10.1016/j.jdent.2023.104556
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 13
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Descripción: © 2023 Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. This document is the Published version of a Published Work that appeared in final form in Journal of Dentistry. To access the final edited and published work see https://doi.org/10.1016/j.jdent.2023.104556
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
1-s2.0-S0300571223001422-main.pdf3,84 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons