Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.jdent.2023.104556

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorSchneider, Lisa-
dc.contributor.authorRischke, Roman-
dc.contributor.authorKrois, Joachim-
dc.contributor.authorKrasowki, Aleksander-
dc.contributor.authorBüttmer, Martha-
dc.contributor.authorMohammad-Rahimi, Hossein-
dc.contributor.authorChaurasai, Akhilanand-
dc.contributor.authorPereira, Nielsen, S.-
dc.contributor.authorLee, Jae-hong-
dc.contributor.authorUribe, Sergio E.-
dc.contributor.authorShahab, Shahriar-
dc.contributor.authorBirke Koca-Ünsal, Revan-
dc.contributor.authorÜnsal, Gürkan-
dc.contributor.authorMartínez Beneyto, Yolanda-
dc.contributor.authorBrinz, Janet-
dc.contributor.authorTryfonos, Olga-
dc.contributor.authorSchwendicke, Falk-
dc.date.accessioned2024-12-27T10:44:42Z-
dc.date.available2024-12-27T10:44:42Z-
dc.date.issued2023-05-18-
dc.identifier.citationJournal of Dentistry 135 (2023) 104556es
dc.identifier.issnPrint: 0300-5712-
dc.identifier.issnElectronic: 1879-176X-
dc.identifier.urihttp://hdl.handle.net/10201/147803-
dc.description© 2023 Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. This document is the Published version of a Published Work that appeared in final form in Journal of Dentistry. To access the final edited and published work see https://doi.org/10.1016/j.jdent.2023.104556-
dc.description.abstractObjective: Federated Learning (FL) enables collaborative training of artificial intelligence (AI) models from multiple data sources without directly sharing data. Due to the large amount of sensitive data in dentistry, FL may be particularly relevant for oral and dental research and applications. This study, for the first time, employed FL for a dental task, automated tooth segmentation on panoramic radiographs. Methods: We employed a dataset of 4,177 panoramic radiographs collected from nine different centers (n = 143 to n = 1881 per center) across the globe and used FL to train a machine learning model for tooth segmentation. FL performance was compared against Local Learning (LL), i.e., training models on isolated data from each center (assuming data sharing not to be an option). Further, the performance gap to Central Learning (CL), i.e., training on centrally pooled data (based on data sharing agreements) was quantified. Generalizability of models was evaluated on a pooled test dataset from all centers. Results: For 8 out of 9 centers, FL outperformed LL with statistical significance (p<0.05); only the center providing the largest amount of data FL did not have such an advantage. For generalizability, FL outperformed LL across all centers. CL surpassed both FL and LL for performance and generalizability. Conclusion: If data pooling (for CL) is not feasible, FL is shown to be a useful alternative to train performant and, more importantly, generalizable deep learning models in dentistry, where data protection barriers are high. Clinical Significance: This study proves the validity and utility of FL in the field of dentistry, which encourages researchers to adopt this method to improve the generalizability of dental AI models and ease their transition to the clinical environment.es
dc.formatapplication/pdfes
dc.format.extent13es
dc.languageenges
dc.publisherElsevier-
dc.relationSin financiación externa a la Universidades
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArtificial intelligencees
dc.subjectBig data-
dc.subjectComputer vision-
dc.subjectDeep learning-
dc.subjectInformatics-
dc.subjectMathematical models-
dc.titleFederated vs local vs central deep learning of tooth segmentation on panoramic radiographses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0300571223001422?via%3Dihub-
dc.identifier.doihttps://doi.org/10.1016/j.jdent.2023.104556-
dc.contributor.departmentDermatología, Estomatología, Radiología y Medicina Física-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
1-s2.0-S0300571223001422-main.pdf3,84 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons