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A B S T R A C T   

Objective: Federated Learning (FL) enables collaborative training of artificial intelligence (AI) models from 
multiple data sources without directly sharing data. Due to the large amount of sensitive data in dentistry, FL 
may be particularly relevant for oral and dental research and applications. This study, for the first time, 
employed FL for a dental task, automated tooth segmentation on panoramic radiographs. 
Methods: We employed a dataset of 4,177 panoramic radiographs collected from nine different centers (n = 143 
to n = 1881 per center) across the globe and used FL to train a machine learning model for tooth segmentation. 
FL performance was compared against Local Learning (LL), i.e., training models on isolated data from each center 
(assuming data sharing not to be an option). Further, the performance gap to Central Learning (CL), i.e., training 
on centrally pooled data (based on data sharing agreements) was quantified. Generalizability of models was 
evaluated on a pooled test dataset from all centers. 
Results: For 8 out of 9 centers, FL outperformed LL with statistical significance (p<0.05); only the center 
providing the largest amount of data FL did not have such an advantage. For generalizability, FL outperformed LL 
across all centers. CL surpassed both FL and LL for performance and generalizability. 
Conclusion: If data pooling (for CL) is not feasible, FL is shown to be a useful alternative to train performant and, 
more importantly, generalizable deep learning models in dentistry, where data protection barriers are high. 
Clinical Significance: This study proves the validity and utility of FL in the field of dentistry, which encourages 
researchers to adopt this method to improve the generalizability of dental AI models and ease their transition to 
the clinical environment.  
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1. Introduction 

Artificial Intelligence (AI) has shown great potential to transform 
dentistry; analyzing a wealth of dental data with AI and using it to 
support diagnostics, treatment planning and actual treatment has been 
demonstrated to be feasible across all dental disciplines [1]. 

Most dental AI employs machine learning, where mathematical 
models are utilized to identify the inherent structure of a training dataset 
to allow inference (prediction) on unseen test data. Usually, this in-
volves labeling of data by experts e.g., the classification of an image as 
showing caries lesions, or detecting the location of a certain pathology 
on an image etc. [2]. 

The translation of developed AI models from the research stage into 
the clinical environment, however, remains slow. Despite a wealth of 
studies, only a few products have successfully passed regulatory hurdles 
and entered routine care [3]. The main barrier for this is grounded in the 
poor generalizability of many AI models. As models are typically trained 
and tested using data from one center, recorded with one technique, 
methodology, and represent a single population. 

An AI application rarely performs similarly well if applied on data 
from other centers, gathered using other technical setups, representing 
different populations, which often differ in age, gender, socio- 
demographic characteristics, or oral health status. [4] Collaborative 
efforts (e.g., gathering data from multiple centers) may help to over-
come generalizability issues and also allow smaller or less experienced 
research groups to participate in state-of-the-art AI research. However, 
such efforts are limited by privacy constraints, which lead to difficulties 
in exchanging particularly dental data as it is oftentimes hard to 
de-identify [5]. 

Federated Learning (FL) is a learning paradigm which enables 
collaborative, data-driven research between multiple centers through a 
privacy-by-design approach. It avoids critical exchanges of sensitive 
data between centers and instead relies on sharing abstract model pa-
rameters, which essentially carry the knowledge learned from this data. 
FL was originally aimed at parallelized training on edge devices and 
smartphones but has caught considerable attention in healthcare [6–9] 
mainly as it may assist to overcome privacy limitations and allow to 
train generalizable models. However, dental research on FL is still 
limited [10]. 

In the present study, we aimed to assess FL for tooth segmentation on 
panoramic radiographs, a specific (and exemplary) task in dental image 
analysis. Tooth segmentation involves labeling pixels belonging to each 
tooth on a panoramic, which allows to identify, classify and relate 
further findings (e.g., a caries or apical lesion) of an AI-based analysis to 

a specific tooth. It was further useful for the present study, as tooth 
segmentation can be relatively easily performed by humans (who label 
the radiographs before using them for training) and can hence be stan-
dardized across centers, reducing the effect of center-specific labeling on 
the outcomes of FL. We used radiographs from nine international centers 
and compared FL against Local Learning (LL, involving training on 
isolated data of each center) and Central Learning (CL, involving data 
pooling, e.g., under the assumption of data sharing agreements being in 
place). We also tested models for their generalizability across centers. 
Our hypothesis was that FL significantly improves the performance and 
generalizability in comparison with LL (i.e., when CL training is not 
feasible due to privacy regulations). We further investigated whether 
specific centers benefited particularly from FL given their specific data 
distribution. 

2. Materials and methods 

2.1. Study design 

In this study, neural networks (see below) were employed to solve a 
multi-class tooth segmentation task on panoramic radiographs. Training 
was conducted with three different learning paradigms: LL, CL and FL. 
The resulting models were evaluated and compared in terms of perfor-
mance (on their own local test dataset) and generalizability (on the 
combined test dataset, i.e., including data from all participating cen-
ters). The contribution of each center to FL varied considerably due to 
disparate data shares. In order to assess the effect of each center’s 
contribution, FL was analyzed further using equal contributions from 
each center in a sensitivity analysis. 

2.2. Data 

The available datasets were collected by nine different centers from 
across the globe as part of the ITU/WHO Focus Group on Artificial In-
telligence for Health (FG-AI4H) Initiative [11], namely (1) Charité – 
Universitätsmedizin Berlin, Berlin, Germany (Charité), (2) University of 
Murcia, Murcia, Spain (MU), (3) King George’s Medical University, 
Lucknow, India (KGMU), (4) Wonkwang University College of Dentistry, 
Daejeon, Korea (WU), (5) Private Practice Dr. Nielsen, Rio de Janeiro, 
Brazil (PPN), (6) University of Kyrenia, Kyrenia, Cyprus (RBKU), (7) 
Shahid Beheshti University of medical sciences, Tehran, Iran (SBMU), 
(8) Shahed University, Tehran, Iran (SU) and (9) Private Practice Dr. 
Uribe, Valdivia, Chile (PP). Details on ethical approval and data pro-
tection considerations can be found in the Appendix. Each center 

Table 1 
The metadata provided by the nine different centers. For some centers, not all metadata was available.  

ID Country City Sample size (Share on overall data) Female (%) Age in years 
(SD) 

Number of teeth (SD) Device 

Charité Germany Berlin 1881 (45.0%) 0.50 44.3 
(20.0) 

29 
(3) 

Sirona 
XG3D 

MU Spain Murcia 252 (6.0%) 0.47 53.3 
(14.9) 

26 
(5) 

Vatech 
PAX-400C 

KGMU India Lucknow 317 (7.6%) 0.30 45.1 
(11.9) 

29 
(5) 

Planmeca 
ProMax 

WU Korea Daejeon 294 (7.0%) 0.60 46.7 
(13.9) 

28 
(2) 

Vatech 
PCH-2500 

PPN Brazil Rio de Janeiro 324 (7.8%) 0.66 44.3 
(19.6) 

27 
(5) 

Kodak 
K9000C 3D 

RBKU Cyprus Kyrenia 337 (8.0%) 0.52 – (–) 28 
(4) 

Sirona 
SL 

SBMU Iran Tehran 374 (9.0%) 0.56 33.7 
(18.0) 

28 
(5) 

Planmeca 
Dimax 3 

SU Iran Tehran 255 (6.1%) 0.45 44.2 
(23.0) 

29 
(4) 

n/a 

PPU Chile Valdivia 143 
(3.4%) 

0.57 35.5 
(18.0) 

29 
(3) 

Sirona 
SL 

n/a not available. 
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provided a convenient sample from already existing radiographs from 
routine care. The exclusion criteria encompassed: edentulous patients, 
primary teeth, severe positional artifacts, inappropriate exposure pa-
rameters and metallic artifacts. The resulting datasets consisted of 143 
to 1881 panoramic radiographs per center leading to 4177 images in 
total. These highly differing numbers of provided images represent a 
typical scenario in real-world applications. Aggregated metadata such as 
the mean number of teeth per panoramic are reported in Table 1. 

For the annotation of the datasets, all teeth in each panoramic were 
segmented and classified according to the FDI World Dental Federation 
notation, which resulted in 32 classes in total (one per tooth). Each 
image was segmented by one expert and then verified by a second in-
dependent expert. The group of experts consisted of a range of super-
vised final year dental students and experienced dentists. Labeling was 
performed independently under standardized conditions using an in- 
house custom-built annotation tool, which was employed in a wide 
range of previous work [12–14]. 

This study was conducted over a 5-fold cross-validation, where data 
were divided into 60% training data (3 folds), 20% validation data (1 
fold), and 20% test data (1 fold). For LL and FL, these data splits per 
center remained separated. For CL, the single center datasets were 
merged fold-wise to create a centralized version of the data. The 
assignment of images for each fold was identical over all learning 
paradigms. 

2.3. Learning paradigms 

Image analysis of radiographs is often conducted with neural net-
works, which are built through an arrangement of mathematical units 
(artificial neurons) and connections with certain values (referred to as 
model parameters or weights) between them. Neural networks must be 
trained to learn the inherent patterns of the images. During training, the 
model sees exemplary images and optimizes its weights until it is 
capable to generate the desired output with a low error. Models are 
typically initialized with predefined values, oftentimes stemming from 
training on existing datasets (e.g., the ImageNet dataset containing 
everyday RGB images [15]). In this study, we refer to varying logistics of 
the learning process (e.g., training location, utilized data) as different 
learning paradigms. The learning paradigm CL is based on data sharing, 
which allows to pool data of different centers in one central location, 
where training is conducted. Notably, CL may not always be feasible due 
to privacy regulations. In this case, centers have either the option to rely 
on LL, which involves training on their data only or to join a FL 

initiative. In FL, participants refrain from exchanging sensitive data and 
instead share abstract model parameters, which essentially carry the 
knowledge learned from their data. The exchange and aggregation of 
parameters in FL are determined by the FL protocol. The most popular 
FL protocol, referred to as Federated Averaging (FedAvg) was proposed 
by McMahan et al. [16] and works as follows: After all participants agree 
on a suitable machine learning approach, the FL server distributes the 
initialized model parameters to all FL participants to kick off the first 
round of FL. Participants use these parameters as a starting point to train 
their model on their local data for a predefined number of local epochs. 
Secondly, all participants send their model parameters, which carry the 
knowledge from their local data, back to the server. The local contri-
butions are weighted according to the dataset sizes of the participants. 
The server then averages all local model parameters to form a set of 
global model parameters. These global parameters are then distributed 
to all participants for the next round of FL training. FL is eventually put 
to a stop when a certain stopping criterion is met, e.g., a predefined 
number of epochs. A high-level overview of FL and the two alternative 
training processes, namely Local Learning and Central Learning is 
visualized in Fig. 1. A more detailed illustration of the FL procedure is 
displayed in Appendix Fig. 1. 

2.4. Training procedure 

The implementation and training parameters of the three learning 
paradigms (FL, LL and CL) are represented in the Appendix. As described 
previously, different centers provided different number of images (as 
would likely be the case clinically) ranging from 143 images (3.4% on 
the overall data share) provided by PPU to 1881 (45% on the overall 
data share) by Charité. Further numbers are reported within the meta-
data in Table 1. These large differences in dataset sizes may affect the 
global model performance of FL heavily as the data contribution of each 
center directly defines its contribution to FL. Hence, in a sensitivity 
analysis, FL training was repeated with each participant contributing 
equally to the global model. 

2.5. Performance metrics and statistical analysis 

Model performances were primarily quantified by a tooth-based F1- 
score (F1-scoretooth), where true positives, false positives and false neg-
atives were computed on a tooth-level instead of the typical pixel-level, 
as described in the Appendix. Secondary metrics were the pixel-wise F1- 
scorepixel, sensitivity and precision (positive predictive value (PPV)). All 

Fig. 1. Differences in Local, Central and Federated Learning. In Local Learning each center trains on its own data only. In Central Learning training data is shared and 
a global model is trained on the combined dataset. In Federated Learning training is done on local data and the respective computed model weights are aggregated at 
a server without exchanging the data itself. 
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models were evaluated on their own local test dataset to quantify model 
performance. For generalizability, testing was performed on the com-
bined test data, i.e., including their own and test data of the other par-
ticipants. We formally tested for statistically significant differences with 
the non-parametric Mann-Whitney-U-Test. p-values level below a sig-
nificance level of 0.05 were considered statistically significant. The 
statistical analysis was performed within Python 3.9.2 and SciPy v1.6.2 
(SciPy 2021). 

3. Results 

The model performances of the three different learning paradigms on 
the local test sets are reported in Fig. 2. For 8 out of 9 participants, FL 
outperformed LL with statistical significance. Participant PPU, for 
instance, reached a mean (SD) F1-scoretooth of 0.55 (0.032) with LL, 
which was dramatically outperformed (p = 0.006) by FL with an F1- 
scoretooth of 0.888 (0.025). Only for the participant Charité, which 
provided the largest share of the data, there was no significant difference 
between LL and FL (p = 0.338). For all participants, CL significantly 
outperformed both FL and LL. Details on other metrics are provided in 
the Appendix Tables 1-3. p-values of the non-parametric Mann-Whitney- 

U-Test are represented in Appendix Table 4. 
The generalizability of the models was captured on the combined test 

data, which included the test data of the dedicated participant combined 
with the test data of all other centers (Fig. 3). For all participants, FL 
outperformed LL (p<0.05). Participant KGMU, for instance, reported an 
F1-scoretooth for LL of 0.351 (0.134), which was outperformed by FL with 
0.768 (0.117). However, FL (and LL) showed a generalizability gap to-
wards CL (p<0.001). Exemplary error cases for the centers KGMU, RBKU 
and PPU in comparison with their ground truth are reported in Fig. 4. LL 
was particularly challenged by segmenting restorations, third molars 
and teeth visualized in low contrast, e.g., lower anteriors due to the 
overlap with the vertebrae. 

As described, centers provided a different number of images for FL, 
which lead to different contributions for FL in the base-case analysis. 
Hence, in our sensitivity analysis, equal contributions of each center 
were employed. This significantly deteriorated the model performance 
of the largest data provider (Charité) from 0.803 (0.01) to 0.777 (0.007) 
(p = 0.008). For all other centers, however, there was no significant 
difference in model performance (p>0.05). Generalizability of the 
models showed no statistically significant difference between the base- 
case and the sensitivity analysis. A visualization of the comparison 

Fig. 2. Model performance (mean toothwise F1-score) of the three different learning paradigms, measured on test sets of each single participant (center) (left y-axis). 
Asterisk indicates statistical significance (p<0.05/Mann-Whitney) between Federated Learning and Local Learning. The relative dataset size from each center is 
indicated by the black line (right y-axis). 

Fig. 3. Generalizability of models developed using the three different learning paradigms, measured as the mean of performances on the test sets pooled from all 
participants (centers). Asterisk indicates statistical significance (p<0.05/Mann-Whitney) between Federated Learning and Local Learning. The relative dataset size 
from each center is indicated by the black line (right y-axis). 
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Fig. 4. Ground truth and exemplary predictions of FL and LL on the test set of KGMU, RBKU and PPU (top to bottom).  

Appendix Fig. 1. Detailed step-by-step description of the FL procedure.  

L. Schneider et al.                                                                                                                                                                                                                               



Journal of Dentistry 135 (2023) 104556

6

and all metrics are provided in Appendix Fig. 2-Appendix Fig. 3 and 
Table 5. p-values of the non-parametric Mann-Whitney-U-Test are re-
ported in Appendix Table 6. 

4. Discussion 

Dental data is oftentimes considered as particularly sensitive given 
for instance its usage in forensics [5]. Data sharing of such sensitive data 
is challenging and administratively complex due to layered and poten-
tially locally varying data protection regulations. Based on this, CL is 
often not feasible. However, to train generalizable deep learning models, 
data from different centers is crucial as models from LL may not perform 
well on data from different centers. FL may be considered as an alter-
native to LL, when CL is not applicable a priori. Based on the amount of 
sensitive dental data, FL may be particularly relevant for oral and dental 
research and applications. In the present study, we compared FL with LL 
and quantified their performance and generalizability gaps towards CL 
(as the ideal option) on an exemplary task, tooth segmentation on 
panoramic radiographs. 

We found that for the majority of participants (8 of 9), models 
trained with FL achieved better performances on their local test sets than 
those trained with LL. The local datasets of the eight participants were 
relatively small and seemed to be insufficient to learn the inherent 
structure of their local data. Only the participant holding the majority of 
data (Charité) was able to reach similar model performances using LL 
compared with FL; the local dataset was relatively large and seemed to 
be suitable to learn the underlying representation of the local data. 
Moreover, FL yielded models that generalized significantly better than 
LL models for all participants, i.e., performed better on the pooled test 
set from all participants. 

Notably, a performance and generalizability gap towards CL was 
observed for both FL and LL, setting out CL as “gold standard” if avail-
able. Our findings require more detailed discussion. 

Charité, the largest data donor, did not benefit from FL when tested 
on data from its own institution but showed improved generalizability 
when compared to LL. It seems that the sample size was sufficient to 
learn their own inherent data representation but did not provide enough 
diversity to perform well on unseen data from other centers. This is 

Appendix Fig. 2. Generalizability (mean toothwise F1-score) of models developed using two different weighting schemes within the FL procedure, measured as the 
mean of performances on the test sets from all participants (centers). Asterisk indicates statistical significance (p<0.05/Mann-Whitney).The relative dataset size from 
each center is indicated by the black line (right y-axis). 

Appendix Fig. 3. Model performance (mean toothwise F1-score) of FL using two different weighting schemes, measured on test sets of each single participant 
(center) (left y-axis). Asterisk indicates statistical significance (p<0.05/Mann-Whitney). The relative dataset size from each center is indicated by the black line (right 
y-axis). 
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notable, as also centers with large datasets may benefit from FL espe-
cially if the developed model is not meant to be used solely in that single 
institution. FL may increase generalizability for any given institutions’ 
deep learning models and hence ease its translation into the clinical 
environment. 

Different participants seem to reach varying model performances 
using FL. For example, MU reached a mean (SD) F1-scoretooth of 0.663 
(0.036) while PPU showed a mean (SD) F1-scoretooth of 0.888 (0.025). 
The reason for this lies in the way FL was conducted. Although every 
participant took part in FL, the final model was significantly shaped by 
the participant(s) carrying the most data. This is caused by the aggre-
gation method FedAvg, which weights updates according to the par-
ticipants’ dataset size. Consequently, updates from the largest 
participant had a stronger effect on the FL model than updates from 
smaller participants. Hence, participants with data close to the distri-
bution of the largest participants (in our case, Charité) performed better 
in FL than those with rather unique distributions. Here, the data dis-
tribution of MU (participant, which benefitted the least from FL) seemed 
to differ more from the data distribution of Charité than other partici-
pants. This heterogeneous nature of the data of different participants is 
known as dataset shift [17] and may be caused by several factors: 
“Covariate data shift” may be introduced through varying radiographic 
devices with different settings. “Prior probability shift” may be caused 
by varying medical standards, social, and commercial determinants in 
different centers and countries (e.g., age and dental status may differ and 
reflect population demographics, oral health and healthcare services). In 
our case, MU represented an older population with a mean (SD) age of 
53.3 (14.9) years compared to Charité with 44.3 (20.0) years and all 

other participants, with a lower number of teeth (26(5)) than Charité 
(29(3)) and others, which may be the reason for the lower performance 
of FL on MU data. 

Further, in our exemplary error case analysis, we found that FL 
models were not able to recognize third molars, since most centers 
provided images with third molars missing (Appendix Fig. 4). This was 
to the disadvantage of centers with a high number of third molars (e.g., 
KGMU). The effect of such shifts may be more apparent if data is not 
equally distributed across centers. However, this scenario could likely be 
expected in real life, where different donors provide differently sized 
datasets with potentially unique features. Rebalancing the weighting 
scheme of the contributions (like we did in our sensitivity analysis) 
seems like a tempting option to tackle the discussed biases (e.g., 
increasing the relative contribution of KGMU should lead to a better 
generalizability of all models for segmenting third molars). However, 
the sensitivity analysis showed that standardizing the contribution of 
each center equally had no effect on the generalizability of all centers, 
and only came with adverse effects when testing it on Charité data. 
Therefore, manual weighting of contributions from different centers 
should be carefully undertaken and monitored appropriately. 

Apart from this, the performance and generalizability gaps between 
FL and CL, observed over the entirety of experiments, should be high-
lighted, and discussed. The root cause for this difference is the previ-
ously discussed dataset shift. In an ideal FL scenario, data would be 
independent and identically distributed, allowing the same perfor-
mances in FL and CL. However, the heterogeneity of the underlying data 
usually hampers model convergence in FL and leads to lower perfor-
mance for FL than CL [18,19–23]. An extensive hyperparameter search 

Appendix Fig. 4. Occurance of third molars numbered 18, 28, 38 and 48 in the datasets across the different centers expressed as share of samples with prevalence of 
the specific third molar. 

Appendix Table 1 
Primary and secondary metrics for CL quantified on test sets of all participants reported with mean value (standard deviation).  

Data of Participant F1-Score 
(Pixelwise) 

F1-Score 
(Toothwise) 

Sensitivity PPV 

Charité 0.89(0.003) 0.833(0.018) 0.836(0.007) 0.95(0.004) 
KGMU 0.891(0.011) 0.858(0.013) 0.835(0.013) 0.956(0.009) 
MU 0.854(0.004) 0.717(0.022) 0.788(0.01) 0.931(0.008) 
PPN 0.897(0.009) 0.889(0.018) 0.846(0.013) 0.955(0.006) 
PPU 0.911(0.005) 0.905(0.016) 0.86(0.006) 0.968(0.009) 
RBKU 0.899(0.005) 0.881(0.013) 0.848(0.006) 0.958(0.004) 
SBMU 0.904(0.007) 0.885(0.006) 0.852(0.006) 0.963(0.009) 
SU 0.902(0.009) 0.894(0.013) 0.857(0.007) 0.953(0.012) 
WU 0.906(0.005) 0.867(0.01) 0.856(0.007) 0.962(0.004)  
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Appendix Table 2 
Primary and secondary metrics for FL quantified on test sets of all participants reported with mean value (standard deviation).  

Model of Participant Data of Participant F1-Score 
(Pixelwise) 

F1-Score 
(Toothwise) 

Sensitivity PPV 

Charité Charité 0.881(0.005) 0.803(0.011) 0.826(0.008) 0.945(0.004) 
KGMU 0.871(0.007) 0.806(0.017) 0.83(0.011) 0.916(0.011) 
MU 0.83(0.006) 0.612(0.035) 0.756(0.008) 0.92(0.005) 
PPN 0.887(0.013) 0.867(0.021) 0.845(0.013) 0.933(0.013) 
PPU 0.906(0.009) 0.899(0.022) 0.866(0.015) 0.95(0.004) 
RBKU 0.889(0.007) 0.859(0.02) 0.845(0.01) 0.938(0.005) 
SBMU 0.892(0.01) 0.855(0.013) 0.847(0.014) 0.943(0.006) 
SU 0.894(0.009) 0.878(0.018) 0.86(0.015) 0.93(0.01) 
WU 0.893(0.007) 0.83(0.018) 0.852(0.011) 0.938(0.009) 

KGMU Charité 0.864(0.002) 0.694(0.014) 0.789(0.005) 0.956(0.005) 
KGMU 0.879(0.01) 0.818(0.029) 0.82(0.018) 0.948(0.006) 
MU 0.814(0.005) 0.471(0.05) 0.724(0.008) 0.93(0.003) 
PPN 0.879(0.01) 0.835(0.028) 0.819(0.013) 0.95(0.007) 
PPU 0.892(0.009) 0.839(0.025) 0.831(0.013) 0.963(0.008) 
RBKU 0.878(0.004) 0.797(0.021) 0.813(0.009) 0.954(0.005) 
SBMU 0.883(0.011) 0.815(0.025) 0.818(0.016) 0.96(0.005) 
SU 0.889(0.012) 0.851(0.025) 0.837(0.017) 0.949(0.015) 
WU 0.889(0.003) 0.792(0.026) 0.828(0.01) 0.961(0.007) 

MU Charité 0.884(0.003) 0.81(0.011) 0.834(0.006) 0.941(0.006) 
KGMU 0.87(0.012) 0.796(0.029) 0.835(0.019) 0.909(0.005) 
MU 0.843(0.005) 0.663(0.036) 0.776(0.011) 0.923(0.007) 
PPN 0.888(0.011) 0.865(0.019) 0.854(0.015) 0.925(0.007) 
PPU 0.905(0.01) 0.895(0.017) 0.872(0.012) 0.939(0.009) 
RBKU 0.893(0.003) 0.859(0.015) 0.856(0.004) 0.933(0.005) 
SBMU 0.894(0.006) 0.851(0.015) 0.855(0.011) 0.937(0.004) 
SU 0.894(0.011) 0.87(0.023) 0.867(0.015) 0.922(0.011) 
WU 0.897(0.004) 0.841(0.012) 0.863(0.006) 0.935(0.007) 

PPN Charité 0.873(0.005) 0.75(0.02) 0.806(0.009) 0.951(0.003) 
KGMU 0.869(0.012) 0.796(0.029) 0.817(0.019) 0.928(0.011) 
MU 0.82(0.011) 0.55(0.05) 0.738(0.016) 0.922(0.005) 
PPN 0.889(0.013) 0.861(0.025) 0.837(0.016) 0.946(0.01) 
PPU 0.902(0.009) 0.867(0.022) 0.85(0.014) 0.96(0.006) 
RBKU 0.884(0.008) 0.823(0.018) 0.828(0.013) 0.948(0.003) 
SBMU 0.888(0.009) 0.825(0.026) 0.831(0.014) 0.954(0.006) 
SU 0.892(0.014) 0.857(0.026) 0.849(0.019) 0.94(0.013) 
WU 0.89(0.006) 0.811(0.021) 0.839(0.012) 0.947(0.006) 

PPU Charité 0.875(0.006) 0.769(0.016) 0.810(0.010) 0.951(0.004) 
KGMU 0.867(0.014) 0.803(0.028) 0.818(0.018) 0.922(0.014) 
MU 0.827(0.008) 0.576(0.030) 0.747(0.011) 0.926(0.005) 
PPN 0.884(0.012) 0.861(0.022) 0.835(0.015) 0.939(0.010) 
PPU 0.901(0.009) 0.888(0.025) 0.852(0.013) 0.957(0.007) 
RBKU 0.887(0.009) 0.846(0.022) 0.835(0.012) 0.946(0.006) 
SBMU 0.892(0.007) 0.852(0.013) 0.839(0.012) 0.952(0.001) 
SU 0.893(0.009) 0.867(0.021) 0.851(0.014) 0.939(0.011) 
WU 0.894(0.009) 0.824(0.023) 0.846(0.015) 0.949(0.009) 

RBKU Charité 0.873(0.008) 0.750(0.032) 0.806(0.014) 0.953(0.004) 
KGMU 0.868(0.008) 0.801(0.019) 0.815(0.013) 0.928(0.008) 
MU 0.819(0.012) 0.546(0.026) 0.735(0.012) 0.926(0.013) 
PPN 0.883(0.007) 0.851(0.013) 0.831(0.008) 0.942(0.011) 
PPU 0.901(0.013) 0.880(0.032) 0.850(0.017) 0.959(0.014) 
RBKU 0.888(0.009) 0.84(0.028) 0.833(0.016) 0.951(0.005) 
SBMU 0.890(0.007) 0.835(0.022) 0.834(0.013) 0.953(0.006) 
SU 0.891(0.014) 0.857(0.032) 0.847(0.019) 0.940(0.013) 
WU 0.892(0.008) 0.816(0.031) 0.839(0.016) 0.952(0.006) 

SBMU Charité 0.869(0.007) 0.731(0.02) 0.802(0.011) 0.949(0.006) 
KGMU 0.867(0.006) 0.785(0.016) 0.814(0.013) 0.927(0.008) 
MU 0.814(0.004) 0.51(0.027) 0.728(0.006) 0.922(0.006) 
PPN 0.88(0.007) 0.837(0.013) 0.826(0.009) 0.94(0.008) 
PPU 0.897(0.014) 0.861(0.029) 0.845(0.019) 0.955(0.009) 
RBKU 0.881(0.008) 0.821(0.024) 0.826(0.011) 0.945(0.007) 
SBMU 0.889(0.012) 0.834(0.018) 0.834(0.017) 0.953(0.008) 
SU 0.886(0.015) 0.852(0.033) 0.844(0.021) 0.932(0.013) 
WU 0.888(0.009) 0.805(0.02) 0.837(0.015) 0.946(0.008) 

SU Charité 0.87(0.004) 0.733(0.032) 0.800(0.01) 0.955(0.006) 
KGMU 0.873(0.009) 0.803(0.034) 0.816(0.02) 0.939(0.008) 
MU 0.821(0.009) 0.521(0.059) 0.735(0.016) 0.929(0.009) 
PPN 0.881(0.012) 0.849(0.032) 0.824(0.016) 0.946(0.01) 
PPU 0.9(0.01) 0.866(0.024) 0.844(0.016) 0.964(0.009) 
RBKU 0.884(0.006) 0.826(0.027) 0.826(0.012) 0.952(0.007) 
SBMU 0.889(0.01) 0.835(0.026) 0.83(0.017) 0.958(0.006) 
SU 0.894(0.011) 0.869(0.019) 0.846(0.018) 0.947(0.013) 
WU 0.89(0.005) 0.805(0.025) 0.833(0.013) 0.955(0.006) 

(continued on next page) 
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Appendix Table 2 (continued ) 

Model of Participant Data of Participant F1-Score 
(Pixelwise) 

F1-Score 
(Toothwise) 

Sensitivity PPV 

WU Charité 0.876(0.002) 0.765(0.017) 0.811(0.005) 0.952(0.006) 
KGMU 0.875(0.011) 0.81(0.024) 0.824(0.019) 0.933(0.011) 
MU 0.828(0.008) 0.568(0.04) 0.746(0.012) 0.93(0.006) 
PPN 0.889(0.01) 0.861(0.023) 0.841(0.015) 0.942(0.005) 
PPU 0.903(0.007) 0.882(0.02) 0.856(0.01) 0.955(0.008) 
RBKU 0.889(0.003) 0.846(0.014) 0.837(0.007) 0.948(0.007) 
SBMU 0.89(0.01) 0.832(0.03) 0.834(0.017) 0.954(0.005) 
SU 0.893(0.01) 0.869(0.017) 0.85(0.014) 0.94(0.012) 
WU 0.903(0.003) 0.853(0.008) 0.854(0.006) 0.959(0.008)  

Appendix Table 3 
Primary and secondary metrics for LL quantified on test sets of all participants reported with mean value (standard deviation).  

Model of Participant Data of Participant F1-Score 
(Pixelwise) 

F1-Score 
(Toothwise) 

Sensitivity PPV 

Charité Charité 0.881(0.004) 0.8(0.024) 0.823(0.007) 0.947(0.002) 
KGMU 0.85(0.012) 0.756(0.023) 0.803(0.016) 0.902(0.007) 
MU 0.817(0.003) 0.59(0.024) 0.737(0.007) 0.916(0.007) 
PPN 0.88(0.014) 0.843(0.028) 0.833(0.018) 0.932(0.009) 
PPU 0.902(0.008) 0.892(0.025) 0.862(0.011) 0.947(0.006) 
RBKU 0.885(0.006) 0.848(0.024) 0.84(0.012) 0.936(0.002) 
SBMU 0.887(0.003) 0.83(0.014) 0.84(0.006) 0.939(0.003) 
SU 0.887(0.009) 0.861(0.015) 0.852(0.009) 0.926(0.011) 
WU 0.879(0.01) 0.792(0.024) 0.829(0.014) 0.935(0.006) 

KGMU Charité 0.708(0.017) 0.203(0.046) 0.583(0.021) 0.899(0.019) 
KGMU 0.818(0.009) 0.564(0.041) 0.729(0.014) 0.933(0.014) 
MU 0.666(0.023) 0.103(0.023) 0.537(0.028) 0.879(0.026) 
PPN 0.754(0.008) 0.412(0.043) 0.648(0.014) 0.904(0.019) 
PPU 0.757(0.022) 0.37(0.027) 0.65(0.024) 0.905(0.021) 
RBKU 0.715(0.01) 0.308(0.037) 0.597(0.011) 0.89(0.018) 
SBMU 0.739(0.025) 0.356(0.065) 0.625(0.033) 0.905(0.017) 
SU 0.756(0.047) 0.441(0.087) 0.654(0.056) 0.896(0.035) 
WU 0.777(0.008) 0.402(0.032) 0.674(0.011) 0.918(0.018) 

MU Charité 0.784(0.006) 0.447(0.017) 0.699(0.01) 0.893(0.008) 
KGMU 0.769(0.021) 0.454(0.047) 0.701(0.034) 0.851(0.011) 
MU 0.775(0.01) 0.389(0.033) 0.688(0.016) 0.886(0.01) 
PPN 0.803(0.021) 0.568(0.054) 0.741(0.03) 0.877(0.014) 
PPU 0.828(0.011) 0.621(0.022) 0.772(0.02) 0.894(0.012) 
RBKU 0.796(0.011) 0.537(0.031) 0.727(0.017) 0.878(0.01) 
SBMU 0.799(0.013) 0.503(0.05) 0.732(0.02) 0.879(0.014) 
SU 0.799(0.018) 0.555(0.026) 0.741(0.022) 0.867(0.016) 
WU 0.818(0.007) 0.534(0.031) 0.754(0.016) 0.894(0.009) 

PPN Charité 0.762(0.009) 0.365(0.024) 0.649(0.01) 0.923(0.012) 
KGMU 0.741(0.021) 0.468(0.031) 0.633(0.023) 0.894(0.02) 
MU 0.676(0.017) 0.193(0.033) 0.547(0.021) 0.884(0.013) 
PPN 0.836(0.012) 0.667(0.038) 0.752(0.013) 0.942(0.011) 
PPU 0.817(0.016) 0.546(0.019) 0.718(0.02) 0.949(0.012) 
RBKU 0.752(0.011) 0.419(0.017) 0.634(0.014) 0.923(0.011) 
SBMU 0.751(0.007) 0.421(0.026) 0.635(0.011) 0.92(0.009) 
SU 0.8(0.023) 0.564(0.038) 0.706(0.03) 0.925(0.017) 
WU 0.782(0.013) 0.495(0.029) 0.684(0.012) 0.913(0.018) 

PPU Charité 0.693(0.011) 0.206(0.027) 0.566(0.014) 0.895(0.007) 
KGMU 0.612(0.036) 0.222(0.042) 0.494(0.036) 0.805(0.03) 
MU 0.608(0.019) 0.085(0.011) 0.477(0.017) 0.835(0.026) 
PPN 0.7(0.032) 0.317(0.064) 0.576(0.039) 0.893(0.013) 
PPU 0.819(0.018) 0.55(0.032) 0.726(0.018) 0.939(0.018) 
RBKU 0.729(0.012) 0.344(0.044) 0.614(0.016) 0.898(0.007) 
SBMU 0.705(0.023) 0.292(0.033) 0.584(0.025) 0.887(0.015) 
SU 0.705(0.022) 0.319(0.033) 0.584(0.027) 0.89(0.012) 
WU 0.691(0.009) 0.268(0.039) 0.569(0.013) 0.878(0.007) 

RBKU Charité 0.793(0.016) 0.452(0.051) 0.693(0.023) 0.926(0.004) 
KGMU 0.761(0.025) 0.505(0.067) 0.667(0.037) 0.886(0.012) 
MU 0.719(0.024) 0.26(0.062) 0.606(0.034) 0.886(0.011) 
PPN 0.803(0.018) 0.599(0.039) 0.717(0.028) 0.915(0.009) 
PPU 0.851(0.018) 0.67(0.049) 0.774(0.025) 0.946(0.01) 
RBKU 0.83(0.01) 0.632(0.027) 0.746(0.016) 0.936(0.003) 
SBMU 0.81(0.018) 0.585(0.056) 0.723(0.027) 0.923(0.007) 
SU 0.805(0.027) 0.611(0.06) 0.723(0.037) 0.908(0.017) 
WU 0.805(0.016) 0.555(0.046) 0.718(0.023) 0.917(0.009) 

SBMU Charité 0.789(0.007) 0.421(0.041) 0.687(0.012) 0.925(0.011) 
KGMU 0.769(0.031) 0.533(0.06) 0.673(0.038) 0.898(0.024) 

(continued on next page) 
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for FL may circumvent this matter to some degree, while this was not in 
our focus here. Employing other FL regimens not building on the 
assumption of identically distributed data may also facilitate to bridge 
the gap between FL and CL. Notably, and most relevantly, CL will not 
always be available in real life given data protection concerns, and FL 
may be the only valid alternative over LL to achieve acceptable per-
formance and generalizability. 

This study comes with a range of strengths and limitations. First, this 
study represents the largest cross-center study on deep learning in 
dentistry. Our collaborative efforts enable new research possibilities in 
terms of cross-center heterogeneities and biases, which is highly 
important to achieve models that generalize well on unseen data. Sec-
ond, it is the first systematic application of FL in dentistry, which is 
relevant for all dental AI researchers given the high data protection 
barriers for pooling dental data. Third, and as a limiting factor, this 
study was based on a simulation of FL instead of true implementation. 
The latter one may be hampered by technical difficulties, as each center 
requires a technical expert on site, and may significantly limit the pos-
sibilities of FL in real life. Fourth, we only explored FL for one specific 
task, tooth segmentation, on one specific image material, panoramic 
radiographs. Moreover, FL may be relevant for non-image or multi- 
modal data pools and should be explored in more depth for such ap-
plications. Further, data labeling was conducted by one expert and 
controlled by a second expert. This seemed justified for our task, which 
was rather simple to conduct. For labeling of pathologies, a larger 
number of experts should label each image, or a hard ground truth 

should be employed instead. Notably, different labeling schemes in 
different centers may affect both learning (particularly LL) and testing, 
which is why standardized labeling should be attempted [24]. Finally, 
we have not conducted an extensive hyperparameter search for either of 
the learning paradigms as it would introduce untenable computational 
costs and most likely will not change the outcome of this study as all 
learning paradigms would benefit from hyperparameter tuning. 

5. Conclusion 

FL boosted the model performance and generalizability on our 
exemplary deep learning task in nearly all involved centers in compar-
ison to LL. FL is a more suitable alternative to LL, when CL is not 
practicable due to privacy regulations. Further research should be con-
ducted to reduce the performance gap between FL and CL. 
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Appendix Table 3 (continued ) 

Model of Participant Data of Participant F1-Score 
(Pixelwise) 

F1-Score 
(Toothwise) 

Sensitivity PPV 

MU 0.706(0.015) 0.214(0.035) 0.589(0.022) 0.884(0.012) 
PPN 0.792(0.019) 0.561(0.056) 0.698(0.03) 0.916(0.009) 
PPU 0.841(0.02) 0.632(0.036) 0.761(0.021) 0.939(0.024) 
RBKU 0.803(0.012) 0.546(0.042) 0.708(0.018) 0.927(0.01) 
SBMU 0.847(0.015) 0.658(0.054) 0.766(0.023) 0.946(0.009) 
SU 0.827(0.022) 0.649(0.037) 0.749(0.022) 0.922(0.025) 
WU 0.775(0.022) 0.473(0.052) 0.676(0.025) 0.907(0.022) 

SU Charité 0.737(0.018) 0.257(0.025) 0.619(0.021) 0.913(0.008) 
KGMU 0.719(0.029) 0.391(0.03) 0.608(0.032) 0.879(0.024) 
MU 0.634(0.016) 0.101(0.021) 0.505(0.019) 0.853(0.014) 
PPN 0.763(0.018) 0.402(0.013) 0.653(0.019) 0.918(0.016) 
PPU 0.795(0.031) 0.465(0.059) 0.692(0.04) 0.935(0.015) 
RBKU 0.723(0.023) 0.334(0.034) 0.601(0.029) 0.906(0.011) 
SBMU 0.759(0.017) 0.4(0.017) 0.651(0.019) 0.91(0.014) 
SU 0.819(0.018) 0.604(0.048) 0.737(0.024) 0.923(0.01) 
WU 0.749(0.008) 0.371(0.032) 0.638(0.011) 0.907(0.014) 

WU Charité 0.729(0.01) 0.287(0.009) 0.614(0.015) 0.897(0.006) 
KGMU 0.747(0.018) 0.458(0.055) 0.651(0.027) 0.877(0.004) 
MU 0.662(0.019) 0.166(0.03) 0.542(0.028) 0.85(0.017) 
PPN 0.766(0.024) 0.49(0.058) 0.671(0.032) 0.893(0.017) 
PPU 0.795(0.019) 0.475(0.033) 0.695(0.026) 0.929(0.013) 
RBKU 0.735(0.019) 0.366(0.022) 0.622(0.028) 0.898(0.012) 
SBMU 0.731(0.035) 0.349(0.046) 0.615(0.045) 0.903(0.014) 
SU 0.774(0.023) 0.51(0.046) 0.682(0.03) 0.895(0.025) 
WU 0.852(0.006) 0.647(0.026) 0.774(0.007) 0.947(0.006)  

Appendix Table 4 
p-values of the non-parametric Mann-Whitney-U-Test, which formally tested for statistically significant differences of the model performance and generalizability of 
different learning paradigms measured as F1-score. p-values level below a significance level of 0.05 were considered as statistically significant.   

Model Performance Model Generalizability 
Participant FL vs LL FL vs CL FL vs LL FL vs CL 

Charité 0.338 0.018 0.035 0.001 
MU 0.006 0.030 <0.001 0.001 
KGMU 0.006 0.011 <0.001 <0.001 
WU 0.006 0.030 <0.001 <0.001 
PPU 0.006 0.105 <0.001 <0.001 
PPN 0.006 0.072 <0.001 <0.001 
SU 0.006 0.030 <0.001 <0.001 
RBKU 0.006 0.018 <0.001 <0.001 
SBMU 0.006 0.006 <0.001 <0.001  
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Appendix Table 5 
Primary and secondary metrics for FL with equal weighting of contributions quantified on test sets of all participants reported with mean value (standard deviation).  

Model of Participant Data of Participant F1-Score 
(Pixelwise) 

F1-Score 
(Toothwise) 

Sensitivity PPV 

Charité Charité 0.877(0.003) 0.777(0.008) 0.818(0.005) 0.945(0.004) 
KGMU 0.866(0.004) 0.796(0.009) 0.824(0.008) 0.914(0.004) 
MU 0.822(0.005) 0.581(0.029) 0.746(0.009) 0.916(0.007) 
PPN 0.882(0.013) 0.851(0.015) 0.837(0.016) 0.933(0.012) 
PPU 0.9(0.01) 0.875(0.021) 0.856(0.013) 0.948(0.009) 
RBKU 0.886(0.005) 0.839(0.019) 0.84(0.01) 0.938(0.003) 
SBMU 0.888(0.004) 0.833(0.016) 0.839(0.003) 0.944(0.006) 
SU 0.891(0.009) 0.865(0.017) 0.855(0.01) 0.93(0.009) 
WU 0.889(0.005) 0.819(0.014) 0.844(0.009) 0.939(0.004) 

KGMU Charité 0.865(0.002) 0.694(0.023) 0.791(0.005) 0.955(0.004) 
KGMU 0.877(0.007) 0.809(0.023) 0.818(0.013) 0.945(0.005) 
MU 0.814(0.008) 0.492(0.043) 0.725(0.013) 0.928(0.003) 
PPN 0.878(0.015) 0.827(0.027) 0.817(0.02) 0.95(0.01) 
PPU 0.892(0.009) 0.835(0.026) 0.832(0.014) 0.962(0.009) 
RBKU 0.877(0.007) 0.788(0.027) 0.812(0.012) 0.952(0.005) 
SBMU 0.886(0.008) 0.813(0.027) 0.823(0.012) 0.959(0.004) 
SU 0.887(0.012) 0.841(0.021) 0.835(0.015) 0.946(0.014) 
WU 0.885(0.004) 0.773(0.027) 0.821(0.009) 0.959(0.009) 

MU Charité 0.882(0.004) 0.8(0.013) 0.829(0.008) 0.942(0.005) 
KGMU 0.873(0.012) 0.806(0.025) 0.835(0.02) 0.914(0.007) 
MU 0.84(0.008) 0.665(0.048) 0.77(0.015) 0.925(0.003) 
PPN 0.888(0.009) 0.862(0.016) 0.85(0.013) 0.93(0.009) 
PPU 0.903(0.009) 0.883(0.021) 0.866(0.011) 0.944(0.009) 
RBKU 0.89(0.005) 0.853(0.014) 0.847(0.01) 0.937(0.004) 
SBMU 0.893(0.007) 0.847(0.026) 0.85(0.014) 0.941(0.004) 
SU 0.891(0.013) 0.865(0.025) 0.864(0.017) 0.921(0.011) 
WU 0.893(0.007) 0.825(0.012) 0.85(0.012) 0.94(0.011) 

PPN Charité 0.87(0.005) 0.734(0.029) 0.8(0.009) 0.954(0.004) 
KGMU 0.869(0.005) 0.798(0.022) 0.814(0.009) 0.932(0.004) 
MU 0.816(0.007) 0.539(0.036) 0.731(0.013) 0.924(0.006) 
PPN 0.886(0.014) 0.856(0.025) 0.831(0.019) 0.949(0.008) 
PPU 0.899(0.009) 0.852(0.023) 0.843(0.012) 0.962(0.01) 
RBKU 0.882(0.006) 0.815(0.029) 0.822(0.012) 0.952(0.007) 
SBMU 0.886(0.006) 0.821(0.026) 0.826(0.011) 0.956(0.004) 
SU 0.891(0.006) 0.854(0.013) 0.843(0.008) 0.944(0.012) 
WU 0.889(0.006) 0.797(0.028) 0.831(0.012) 0.956(0.008) 

PPU Charité 0.875(0.004) 0.764(0.014) 0.81(0.007) 0.953(0.004) 
KGMU 0.871(0.007) 0.808(0.017) 0.822(0.011) 0.927(0.005) 
MU 0.821(0.011) 0.57(0.038) 0.741(0.015) 0.92(0.009) 
PPN 0.887(0.01) 0.86(0.018) 0.835(0.013) 0.946(0.008) 
PPU 0.902(0.012) 0.879(0.019) 0.852(0.014) 0.958(0.01) 
RBKU 0.889(0.006) 0.846(0.015) 0.836(0.009) 0.951(0.005) 
SBMU 0.896(0.003) 0.851(0.011) 0.842(0.004) 0.956(0.003) 
SU 0.894(0.01) 0.874(0.018) 0.852(0.011) 0.941(0.01) 
WU 0.894(0.005) 0.824(0.016) 0.841(0.008) 0.954(0.005) 

RBKU Charité 0.877(0.002) 0.763(0.021) 0.811(0.005) 0.955(0.004) 
KGMU 0.876(0.008) 0.815(0.022) 0.825(0.014) 0.934(0.002) 
MU 0.829(0.007) 0.572(0.055) 0.746(0.015) 0.932(0.006) 
PPN 0.889(0.015) 0.861(0.026) 0.837(0.021) 0.948(0.007) 
PPU 0.905(0.006) 0.881(0.015) 0.854(0.006) 0.961(0.008) 
RBKU 0.891(0.004) 0.85(0.007) 0.837(0.006) 0.951(0.006) 
SBMU 0.894(0.008) 0.845(0.028) 0.838(0.012) 0.957(0.004) 
SU 0.894(0.008) 0.871(0.018) 0.852(0.009) 0.941(0.011) 
WU 0.894(0.004) 0.826(0.019) 0.842(0.007) 0.953(0.008) 

SBMU Charité 0.871(0.005) 0.734(0.025) 0.803(0.009) 0.952(0.004) 
KGMU 0.872(0.006) 0.808(0.014) 0.822(0.009) 0.928(0.006) 
MU 0.817(0.011) 0.521(0.042) 0.734(0.016) 0.922(0.004) 
PPN 0.885(0.011) 0.853(0.025) 0.832(0.015) 0.945(0.007) 
PPU 0.901(0.009) 0.867(0.016) 0.85(0.013) 0.959(0.006) 
RBKU 0.885(0.004) 0.829(0.018) 0.83(0.008) 0.948(0.006) 
SBMU 0.895(0.003) 0.848(0.009) 0.841(0.005) 0.956(0.006) 
SU 0.892(0.009) 0.873(0.015) 0.851(0.009) 0.937(0.012) 
WU 0.889(0.005) 0.803(0.015) 0.836(0.009) 0.948(0.008) 

SU Charité 0.872(0.006) 0.735(0.029) 0.803(0.01) 0.955(0.002) 
KGMU 0.873(0.011) 0.807(0.028) 0.82(0.016) 0.933(0.007) 
MU 0.82(0.01) 0.525(0.035) 0.736(0.015) 0.927(0.006) 
PPN 0.886(0.013) 0.853(0.029) 0.83(0.017) 0.95(0.008) 
PPU 0.899(0.008) 0.866(0.018) 0.845(0.007) 0.962(0.009) 
RBKU 0.886(0.006) 0.825(0.026) 0.827(0.011) 0.953(0.004) 
SBMU 0.891(0.008) 0.84(0.019) 0.833(0.011) 0.959(0.006) 
SU 0.894(0.007) 0.868(0.01) 0.848(0.01) 0.946(0.008) 
WU 0.892(0.006) 0.81(0.033) 0.836(0.009) 0.956(0.003) 

(continued on next page) 
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Appendix 

Data sources, ethics and data protection 

The following centers participate; ethical approval was covered by 
the main center in Berlin and, in accordance with local regulations 
others centers sought local approval, too: (1) (Charité), (2) (MU), (3) 
(KGMU), (4) (WU), (PPN), (6) (RBKU), (7) (SBMU), (8) (SU) and (9) 
(PPU). For all partners, data sharing (transfer) agreements in line with 
European General Data Protection Regulation (GDPR) and Berliner 
Landeskrankenhausgesetz (LHG, Berlin Hospital Law) were in place. As 

per these agreements, data donors were to ensure that they fulfilled local 
legal requirements for processing personal health data and to provide 
personal data only within the grounds of GDPR (e.g., on informed 
consent basis or after sufficient de-identification according to local 
regulation) and/or LHG (allowing the processing of data for scientific 
purposes). 

Training 

For all three learning paradigms (FL, LL and CL), UNet++ [25] with 
a ResNet-34 backbone provided by Iakubovskii [26] was used as model 
architecture given to its high performance for dental radiograph analysis 
[14]. The applied loss function was a combination of Focal and Dice loss. 
The Dice loss is based on the most used metric for evaluating segmen-
tations, namely the Sørensen–Dice coefficient [27]. The Focal loss was 
developed as an extension of the binary cross-entropy loss, which tackles 
the issue of class imbalance by reducing the impact of easy examples 
(here background segmentation) to yield focus on harder examples 
(tooth segmentation) [28]. Training was performed with the Adam 
optimizer [29] with a learning rate of 0.0003. For image augmentation, 
the following data augmentation methods from MONAI v0.9 were 
applied: Random Gaussian Noise, Random Shift in Intensity, Random 
Gaussian Smoothing and Random Spatial Crop. All architecture pa-
rameters were initialized with pre-trained parameters on ImageNet [15] 
and optimization was performed over all layers of the architecture. 
Training was seeded identically. LL and CL were both performed for 300 
epochs, while FL was performed for 500 global epochs, each including 
one local training epoch on the participants’ site. Finally, after the last 
global epoch, local models were fine-tuned to their local data for four 
epochs. 

We deliberately decided to forego early stopping, as it may employ 
inconsistencies in the models across centers due to varying stopping 
points of centers in the training process. We selected a higher number of 
epochs for FL as, by nature, it may take longer to converge. We further 
employed FedProx [18] in FL, which adds a regularization term to the 
loss that penalizes large deviations from the global FL model on the 
participants’ site and improves the convergence of FL. No extensive 
hyperparameter search was conducted, as we aimed at model compar-
isons instead of maximizing model performances. LL, CL, FL and the 
sensitivity analysis of FL were performed on multiple NVIDIA A100 
40GB GPUs and were all implemented with NVFlare v2.0 [30] and 
PyTorch v1.12. 

Performance metrics and statistical analysis 

Model performances were primarily quantified by a tooth-based F1- 
score (F1-scoretooth), where true positives, false positives and false neg-
atives were computed on a tooth-level instead of the typical pixel-level. 
For this, the agreement of label and prediction was assessed by dividing 
the area of overlap by the area of union (Intersection over Union). An 
agreement of 0.8 or higher resulted in a true positive tooth count, while 
lower agreements led to a false positive count. A true negative count was 
a missing tooth, correctly recognized and therefore, not segmented by 

Appendix Table 5 (continued ) 

Model of Participant Data of Participant F1-Score 
(Pixelwise) 

F1-Score 
(Toothwise) 

Sensitivity PPV 

WU Charité 0.874(0.006) 0.753(0.024) 0.808(0.011) 0.952(0.004) 
KGMU 0.874(0.008) 0.808(0.022) 0.821(0.016) 0.934(0.01) 
MU 0.827(0.005) 0.562(0.015) 0.744(0.009) 0.931(0.003) 
PPN 0.885(0.01) 0.852(0.016) 0.834(0.012) 0.944(0.012) 
PPU 0.899(0.011) 0.866(0.035) 0.85(0.018) 0.954(0.006) 
RBKU 0.886(0.009) 0.831(0.033) 0.831(0.018) 0.95(0.004) 
SBMU 0.888(0.01) 0.826(0.023) 0.83(0.016) 0.954(0.006) 
SU 0.891(0.01) 0.861(0.016) 0.847(0.014) 0.939(0.011) 
WU 0.898(0.008) 0.835(0.03) 0.844(0.015) 0.959(0.003)  

Appendix Table 6 
p-values of the non-parametric Mann-Whitney-U-Test, which formally tested for 
statistically significant differences of the model performance and generaliz-
ability of FL with equal contributions and with contributions weighted by data 
share. p-values level below a significance level of 0.05 were considered as sta-
tistically significant.   

Model Performance Model Generalizability 
Participant Equal vs Weighted Equal vs Weighted 

Charité 0.006 0.083 
MU 0.5 0.473 
KGMU 0.265 0.534 
WU 0.265 0.362 
PPU 0.265 0.987 
PPN 0.338 0.493 
SU 0.5 0.809 
RBKU 0.417 0.325 
SBMU 0.072 0.255  
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the model. If the model missed a tooth completely, it was counted as 
false negative. All true positives, false positives and false negatives were 
summed up over all channels of the segmentation label before 
computing the F1-score. This computation results in unbiased F1-scores 
[31]. 
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