Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1016/j.cam.2021.114072
Twittear
Título: | Solving the interference problem for ellipses and ellipsoids: New formulae. |
Fecha de publicación: | jun-2022 |
Editorial: | Elsevier. Journal of Computational and Applied Mathematics 407 (2022) . |
Cita bibliográfica: | Journal of Computational and Applied Mathematics |
ISSN: | 0377-0427 1879-1778 |
Palabras clave: | Ellipses Ellipsoids Subresultants Events detection |
Resumen: | The problem of detecting when two moving ellipses or ellipsoids overlap is of interest to robotics, CAD/CAM, computer animation, etc., where ellipses and ellipsoids are often used for modelling (and/or enclosing) the shape of the objects under consideration. By analysing symbolically the sign of the real roots of the characteristic polynomial of the pencil defined by two ellipses/ellipsoids A and B given by XTAX = 0 and XTBX = 0, we derive new formulae characterising when A and B overlap, are separate, or touch each other externally. This characterisation is defined by a minimal set of polynomial inequalities depending only on the entries of A and B so that we need only compute the characteristic polynomial of the pencil defined by A and B, det(TA + B), and not the intersection points between them. Compared with the best available approach dealing with this problem, the new formulae involve a smaller set of polynomials and less sign conditions. As an application, this characterisation provides also a new approach for exact collision detection of two moving ellipses or ellipsoids since the analysis of the univariate polynomials (depending on the time) in the previously mentioned formulae provides the collision events between them. |
Autor/es principal/es: | Caravantes, Jorge Díaz Toca, Gema M. Fioravanti, Mario González Vega, Laureano |
Facultad/Departamentos/Servicios: | Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Ingeniería y Tecnología de Computadores |
Forma parte de: | Mathematical Visualization: Foundations, Algorithms and Applications ( Authors are partially supported by the grant PID2020-113192GB-I00/AEI/10.13039/501100011033 ) |
URI: | http://hdl.handle.net/10201/136890 |
DOI: | https://doi.org/10.1016/j.cam.2021.114072 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 30 |
Derechos: | info:eu-repo/semantics/openAccess |
Descripción: | ©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Submitted version of a Published Work that appeared in final form in Journal of Computational and Applied Mathematics. To access the final edited and published work see https://doi.org/10.1016/j.cam.2021.114072 |
Aparece en las colecciones: | Artículos: Ingeniería y Tecnología de Computadores |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
FormulaeEllipsesEllipsoids_RevisedVersion_02112021.pdf | 1,9 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.