Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.cam.2021.114072

Título: Solving the interference problem for ellipses and ellipsoids: New formulae.
Fecha de publicación: jun-2022
Editorial: Elsevier. Journal of Computational and Applied Mathematics 407 (2022) .
Cita bibliográfica: Journal of Computational and Applied Mathematics
ISSN: 0377-0427
1879-1778
Palabras clave: Ellipses
Ellipsoids
Subresultants
Events detection
Resumen: The problem of detecting when two moving ellipses or ellipsoids overlap is of interest to robotics, CAD/CAM, computer animation, etc., where ellipses and ellipsoids are often used for modelling (and/or enclosing) the shape of the objects under consideration. By analysing symbolically the sign of the real roots of the characteristic polynomial of the pencil defined by two ellipses/ellipsoids A and B given by XTAX = 0 and XTBX = 0, we derive new formulae characterising when A and B overlap, are separate, or touch each other externally. This characterisation is defined by a minimal set of polynomial inequalities depending only on the entries of A and B so that we need only compute the characteristic polynomial of the pencil defined by A and B, det(TA + B), and not the intersection points between them. Compared with the best available approach dealing with this problem, the new formulae involve a smaller set of polynomials and less sign conditions. As an application, this characterisation provides also a new approach for exact collision detection of two moving ellipses or ellipsoids since the analysis of the univariate polynomials (depending on the time) in the previously mentioned formulae provides the collision events between them.
Autor/es principal/es: Caravantes, Jorge
Díaz Toca, Gema M.
Fioravanti, Mario
González Vega, Laureano
Facultad/Departamentos/Servicios: Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Ingeniería y Tecnología de Computadores
Forma parte de: Mathematical Visualization: Foundations, Algorithms and Applications ( Authors are partially supported by the grant PID2020-113192GB-I00/AEI/10.13039/501100011033 )
URI: http://hdl.handle.net/10201/136890
DOI: https://doi.org/10.1016/j.cam.2021.114072
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 30
Derechos: info:eu-repo/semantics/openAccess
Descripción: ©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Submitted version of a Published Work that appeared in final form in Journal of Computational and Applied Mathematics. To access the final edited and published work see https://doi.org/10.1016/j.cam.2021.114072
Aparece en las colecciones:Artículos: Ingeniería y Tecnología de Computadores

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
FormulaeEllipsesEllipsoids_RevisedVersion_02112021.pdf1,9 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.