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Abstract

The problem of detecting when two moving ellipses or ellipsoids overlap is of interest
to robotics, CAD/CAM, computer animation, etc., where ellipses and ellipsoids are often
used for modelling (and/or enclosing) the shape of the objects under consideration. By
analysing symbolically the sign of the real roots of the characteristic polynomial of the
pencil defined by two ellipses/ellipsoids A and B given by XTAX = 0 and XTBX = 0,
we derive new formulae characterising when A and B overlap, are separate, or touch
each other externally. This characterisation is defined by a minimal set of polynomial
inequalities depending only on the entries of A and B so that we need only compute the
characteristic polynomial of the pencil defined by A and B, det(TA + B), and not the
intersection points between them. Compared with the best available approach dealing
with this problem, the new formulae involve a smaller set of polynomials and less sign
conditions. As an application, this characterisation provides also a new approach for
exact collision detection of two moving ellipses or ellipsoids since the analysis of the
univariate polynomials (depending on the time) in the previously mentioned formulae
provides the collision events between them.
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1 Introduction

The problem of detecting the collisions or overlap of two ellipses in the plane or two ellipsoids in
the 3D space is of interest to robotics, CAD/CAM, computer animation, etc., where ellipses and
ellipsoids are often used for modelling (or enclosing) the shape of the objects under consideration
(see for example [8, 14, 15, 16, 18, 19, 24, 25, 29]).

In this paper, we propose new formulae to characterise the separation by a line of two
ellipses in the plane, and by a plane of two ellipsoids in the three dimensional real affine space,
by using subresultants to control the multiplicity structure of a univariate polynomial and
Descartes’ law of signs to control the number of positive real roots of a univariate polynomial.
Our approach is based on the characterisation presented in [21] and [28] where the separation of
two ellipses/ellipsoids is determined by the sign of the real roots of the characteristic polynomial
of the matrix pencil defined by the two considered ellipses/ellipsoids.

Note that our goal is not the computation of the intersection points between the two con-
sidered ellipses or ellipsoids. In fact, this intersection problem can be solved by any numerical
nonlinear solver or by “ad–hoc” methods. Nevertheless, the results later described can be used
as a preprocessing step since any intersection problem is highly simplified if the structure of
the intersection set is known in advance. Also observe that the problem considered here can
be presented as a quantifier elimination problem over the reals (see [2]), since we are looking
for conditions on the coefficients of the equations defining the considered ellipses/ellipsoids in
order they do not share an interior common point.

The main result of this paper is the introduction of new formulae characterising when two
ellipses/ellipsoids are separate, overlapping or externally tangent, improving, for the ellipsoids
case, the best existing solution introduced in [22]. Compared with this solution, we present, at
least, three improvements:

1. Less polynomials are involved: the solution in [22] requires to deal with 5 polynomials
and our solution does require only 3 of them.

2. The way the relative positions are characterised is simpler than in [22] (less sign conditions
are involved).

3. Our general approach is the same for ellipses and ellipsoids and the proofs are simpler
since they do not require to use Sturm–Habicht or signed subresultant sequences and the
formulae obtained are very easy to interpret.

For ellipses we obtain (in a different and very direct way) and improve slightly the formulae
introduced in [1] for deciding when two ellipses are separate, overlapping or externally tangent.
Moreover, the approach presented here is specially well suited for analysing the relative position
of two ellipses/ellipsoids depending on one parameter (see for example [5, 6, 7, 10, 12, 22, 27]).

This paper is organised as follows. In Section 2, we introduce subresultants, their main
properties and Descartes’ law of signs. Section 3 deals with the ellipses separation problem
introducing formulae characterising when two ellipses are separate, overlapping or externally
tangent and using them to solve the interference problem for two moving ellipses. Section 4 deals
with the ellipsoids separation problem introducing formulae characterising when two ellipsoids
are separate, overlapping or externally tangent and using them to solve the interference problem

2



for two moving ellipsoids. This section includes five examples highlighting how our approach
works in practice when computing the collision free intervals for two moving ellipsoids. Last
section is devoted to presenting some conclusions and further work.

2 Subresultants and Descartes’ law of signs

Subresultants will be the algebraic tool to use to determine, in a very easy and compact way,
the greatest common divisor of two univariate polynomials, or the number of different real roots
of a univariate polynomial, when they involve parameters or algebraic numbers as coefficients.

Definition 1.
Let

P (T ) =

p∑
i=0

aiT
i and Q(T ) =

q∑
i=0

biT
i

be two polynomials with coefficients in a field with p ≥ q and j ∈ {0, 1, . . . , q − 1}. We define
the j–th subresultant polynomial of P (T ) and Q(T ) with respect to T in the following way:

Sresj(P,Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ap ap−1 ap−2 . . . . . . a0
. . . . . . . . . . . .

ap ap−1 ap−2 . . . . . . a0
bq bq−1 bq−2 . . . . . . . . . b0

. . . . . . . . . . . .

bq bq−1 bq−2 . . . . . . . . . b0
1 −T

. . . . . .

1 −T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 q − j

 p− j j

The resultant of P (T ) and Q(T ) with respect to T is:

Resultant(P,Q) = Sres0(P,Q) .

The subresultants of P (T ) and Q(T ) always belong to the ideal generated by P (T ) and
Q(T ) and allow to characterise easily the degree of the greatest common divisor of two uni-
variate polynomials whose coefficients depend on one or several parameters. The determinants
sresj(P,Q), which are the formal leading coefficients of the polynomials in the subresultant
sequence for P (T ) and Q(T ), can be used to compute the greatest common divisor of P (T )
and Q(T ) in the following way:

Sresi(P,Q) = gcd(P,Q) ⇐⇒

{
sres0(P,Q) = . . . = sresi−1(P,Q) = 0

sresi(P,Q) 6= 0
(1)

Proofs of this result can be found in [2, 11]. Next definition introduces the subresultant
sequence associated to P (T ) as the subresultant sequence for P (T ) and P ′(T ), the main tool,
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together with Descartes’ law of signs, we will use to count the number of positive real roots of
an univariate polynomial.

Definition 2.
Let P (T ) be a polynomial in R[T ] with p = deg(P ). We define the subresultant sequence of
P (T ) as Sresp(P ) = P (T ), Sresp−1(P ) = P ′(T ) and for every j ∈ {0, . . . , p− 2}:

Sresj(P ) = Sresj(P, P
′).

There are many different ways of defining and computing subresultants: see [2, 11, 13, 20] for
a short introduction and for a pointer to several references. The definition of the polynomials
in the subresultant sequence through determinants allows to perform computations dealing
with greatest common divisors in a generic way: if P (T ) is a polynomial with parameters or
algebraic numbers as coefficients whose degree does not change after specialisation then the
subresultant sequence for P (T ) can be computed without specialising the parameters, and the
result is always correct after specialisation (modulo the condition over the degree of P (T )).
This is not true when using Euclidean algorithm: the computation of the Euclidean remainders
makes denominators to appear that may vanish after specialisation and, even fixing the degree
of P (T ), the sequence has not always the same number of elements (see [2, 11] for a more
detailed explanation).

Notation 3.
If P (T ) is a polynomial in R[T ] with p = deg(P ) and 0 ≤ k ≤ p− 2 then the coefficients of the
subresultants of P of index k will be denoted in the following way:

Sresk(P )
def
= sk(P )T k + sk,k−1(P )T k−1 + . . .+ sk,1(P )T + sk,0(P ) . (2)

When P (T ) is clearly determined, we will write sk and sk,j instead of sk(P ) and sk,j(P ).

We close this subsection by reviewing the relation between the discriminant of a univariate
polynomial P (T ) and the resultant of P (T ) and P ′(T ). Let P (T ) be a monic polynomial of
degree p and x1, . . . , xp its roots (repeated according to their multiplicities). The discriminant
of P (T ) (see for example [2, 17]) is defined to be

Disc(P ) =
∏

1≤i<j≤p

(xi − xj)2.

In order to compute Disc(P ) we have

Disc(P ) = (−1)
p(p−1)

2 Resultant(P, P ′) = (−1)
p(p−1)

2 Sres0(P ) = (−1)
p(p−1)

2 s0(P ).

When P (T ) is not monic, P (T ) = apT
p + . . .+ a1T + a0, we have

Disc(P ) = a2p−2p Disc

(
P

ap

)
=

(−1)
p(p−1)

2

ap
Sres0(P ) =

(−1)
p(p−1)

2

ap
s0(P ). (3)

Typically the use of the discriminant is linked to characterise when a polynomial has multiple
roots but, for low degree polynomials, it is also very useful to determine easily the number of
different real roots (see [17] for example).
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2.1 Descartes’ law of signs

Descartes’ law of signs (see [2]) provides an upper bound for the number of positive real roots
(taking into account multiplicities) of a univariate polynomial by determining the number of
sign changes in the coefficients sequence of the considered polynomial.

For a sequence of real numbers b0, b1, . . . , bn, Var(b0, b1, . . . , bn) will denote the number of
sign changes in b0, b1, . . . , bn after dropping the zeros in the sequence.

Proposition 4. (Descartes’ law of signs)
Let P (T ) be the polynomial in R[T ],

P (T ) =
n∑

k=0

akT
k,

where an and a0 are nonzero. The number of positive real roots of P (T ) = 0, counted with
multiplicity, is equal to

Var(an, an−1, . . . , a0)− 2m,

for some non–negative integer m.

We will use here the following refined version of Descartes’ law of signs computing exactly
the number of positive real roots (taking into account multiplicities) of a univariate polynomial
when all the roots are known to be real.

Proposition 5.
Let P (T ) be the polynomial in R[T ],

P (T ) =
n∑

k=0

akT
k,

where an and a0 are nonzero. If all the roots of P (T ) are real then the number of positive real
roots of P (T ) = 0, counted with multiplicity, is equal to

Var(an, an−1, . . . , a0).

See Remark 2.42 in [2] for a proof of this version of Descartes’ law of signs.

3 On the ellipses interference problem

Let A be a conic in R2. Let X = (X, Y, 1). The implicit equation of A in R2 can be written as

a11X
2 + a22Y

2 + 2a12XY + 2a13X + 2a23Y + a33 = 0,

or in matricial form A : XAX t = 0, where A is the symmetric matrix

A =

a11 a12 a13
a12 a22 a23
a13 a23 a33

 .
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In what follows we assume that the matrix A is presented so that the interior of the ellipse A
is defined by XAX t < 0. If the conic is an ellipse (i.e., a non-degenerate conic with real affine
points and no real points at infinity) then det(A) < 0.

Definition 6.
Given two conics A : XAX t = 0 and B : XBX t = 0, their characteristic equation is defined as

P (T ) = det(TA+B) = det(A)T 3 + . . .+ det(B),

which is, if det(A) 6= 0, a cubic polynomial in T with real coefficients.

Next theorem was introduced in [21] and connects some relative positions (separation, ex-
ternal tangency and overlapping) of two ellipses with the sign of the real roots of their charac-
teristic equation. This is the starting point for the approach we introduce in this section when
characterising the separation or the external tangency of two ellipses (see also [1] and [10]).

Theorem 7.
Let A and B be two ellipses with characteristic equation P (T ). Then:

1. The leading coefficient and the constant term of P (T ) are strictly negative.

2. The characteristic equation P (T ) has at least one negative real root.

3. A and B are separated by a line if and only if P (T ) has two positive different real roots.

4. A and B touch each other externally if and only if P (T ) has a positive double root.

This (very) well known lemma shows that, for cubic polynomials, the positivity of the
discriminant characterises the case of having three different real roots (see [17] for example).

Lemma 8.
Let P (T ) = a3T

3 + a2T
2 + a1T + a0 be a polynomial in R[T ]. Then P (T ) has three different

real roots if and only if Disc(P) > 0.

The following lemma shows how the roots and the coefficients of the characteristic polyno-
mial are related when the two considered ellipses are separate (i.e., when there are two positive
different real roots and one negative).

Lemma 9.
Let β1 > 0, β2 > 0 and γ < 0 be three different real numbers, and

P (T ) = a3T
3 + a2T

2 + a1T + a0 = a3(T − β1)(T − β2)(T − γ),

with a3 < 0 and a0 < 0. Then s0 > 0, a1 > 0 or s0 > 0, a2 > 0.

Proof. Previous lemma implies Disc(P) > 0. By Equation (3), we have

Disc(P) = − s0
a3

.
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Moreover, the coefficient a3 is negative, which implies s0 > 0.
On the other hand, according to Proposition 5, we have Var(a3, a2, a1, a0) =

Var(−, a2, a1,−) = 2. There are only five possibilities (out of nine) for the signs of a2 and a1
compatible with having two sign variations: a2 > 0, a1 > 0 or a2 < 0, a1 > 0 or a2 = 0, a1 > 0 or
a2 > 0, a1 < 0 or a2 > 0, a1 = 0. Since the first three possibilities are equivalent to a1 > 0, and
the last two ones to a1 ≤ 0, a2 > 0, we conclude that the only possibilities are s0 > 0, a1 > 0
or s0 > 0, a1 ≤ 0, a2 > 0. Since a1 > 0 or a2 > 0 is the same set as a1 > 0 or a1 < 0, a2 > 0
or a1 = 0, a2 > 0 (the complementary of a1 ≤ 0 and a2 ≤ 0 in both cases), we get the desired
conclusion.

Next lemma shows the formulae connecting subresultants, roots and coefficients of a cubic
polynomial with a real and double root. These equalities will be the main tools for allowing
us to characterise when two ellipses are externally tangent in terms of the coefficients of their
characteristic equation.

Lemma 10.
Let β and γ be real numbers, β 6= γ, and

P (T ) = a3T
3 + a2T

2 + a1T + a0 = a3(T − β)2(T − γ).

Then (see Equation (2)):

s0 = 0, s1 = 2a33(γ − β)2, s1,0 = −2a33β(γ − β)2, β = −s1,0
s1
, γ = − a0s

2
1

a3s21,0
.

Proof. Equalities for s0, s1 and s1,0 follow directly from Definition 1 applied to our concrete
polynomial P (T ). Since gcd(P, P ′) = T − β, using the equivalence in (1), we have

gcd(P, P ′) = Sres1(P ) = s1T + s1,0 ,

and the corresponding equality for β (since it is a root of Sres1(P )). Since

T − γ =
P (T )

a3(T − β)2
,

we get (making T = 0),

γ = − a0
a3β2

,

and the corresponding equality for γ (replacing β by its value in terms of s1 and s1,0).

Remark 11.
If P (T ) = a3T

3 + a2T
2 + a1T + a0 then

• s0 = a3 (27a20a
2
3 − 18a0a1a2a3 + 4a0a

3
2 + 4a31a3 − a21a22),

• s1 = 2a3 (a22 − 3a1a3) and

• s1,0 = a3 (a1a2 − 9a0a3).

In what follows, a3 will refer to the determinant of a matrix defining an ellipse and it will be
always negative. Thus, in the formulae to be introduced in the next subsections where the signs
of s0, s1 and s1,0 are required, we can replace a3 by −1.
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3.1 Characterising two separated ellipses

The best solution for identifying the relative position of two coplanar ellipses can be found in
[1]. There, in Figures 1 and 4, the authors describe all the positional relationships between two
ellipses and they present a binary decision tree to identify every position appearing in Figure
1 (in terms of the coefficients of the considered ellipses).

In this section we are interested in characterizing when two ellipses are separate (Type 3 in
[1, Section 6, Figures 1 and 4]). If P (T ) = a3T

3 +a2T
2 +a1T +a0 is the characteristic equation

of the two considered ellipses, they prove that they are separate if and only if s0 > 0, a1 > 0 or
s0 > 0, a2 > 0. Next theorem introduces a new proof of this characterisation mainly based on
the Descartes’ law of signs applied to P (T ). Recall that a3 < 0 and a0 < 0.

Theorem 12. (see Type 3 in [1, Figures 1 and 4])
Ellipses A and B are separate if and only if s0 > 0, a1 > 0 or s0 > 0, a2 > 0.

Proof. If the ellipses A and B are separate then, according to Theorem 7 (2 and 3), their
characteristic equation has the structure required by Lemma 9, and we can conclude that
s0 > 0, a1 > 0 or s0 > 0, a2 > 0.

Now we assume s0 > 0, a1 > 0 or s0 > 0, a2 > 0. Lemma 8 and s0 > 0 implies that the
characteristic equation of A and B, P (T ) = a3T

3 + a2T
2 + a1T + a0, has three different real

roots being, at least, one of them negative (Theorem 7 (2)). This implies that Descartes’ law of
signs applied to P (T ) is exact when counting the number of positive real roots (Proposition 5).
Since a1 > 0 or a2 > 0 (the complementary of a1 ≤ 0 and a2 ≤ 0) we have only the following
five possibilities:

• a1 > 0 and a2 > 0: Var(a3, a2, a1, a0) = Var(−,+,+,−) = 2,

• a1 > 0 and a2 < 0: Var(a3, a2, a1, a0) = Var(−,−,+,−) = 2,

• a1 > 0 and a2 = 0: Var(a3, a2, a1, a0) = Var(−, 0,+,−) = 2,

• a1 < 0 and a2 > 0: Var(a3, a2, a1, a0) = Var(−,+,−,−) = 2,

• a1 = 0 and a2 > 0: Var(a3, a2, a1, a0) = Var(−,+, 0,−) = 2,

and so we can conclude that P (T ) has two different positive real roots. According to Theorem
7 (3), the ellipses A and B are separate.

As a consequence of the proof of the previous theorem, we obtain immediately the following
corollary.

Corollary 13.
Ellipses A and B are separate if and only if Var(−, a2, a1,−) = 2 and s0 > 0.
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3.2 Characterising two externally tangent ellipses

Next theorem shows that we can characterise when two ellipses are externally tangent in terms
of the signs of s0 and s1,0.

Theorem 14.
Ellipses A and B are externally tangent if and only if s0 = 0 and s1,0 > 0.

Proof. If the ellipses touch each other externally then, according to Theorem 7, we have that
P (T ) has one positive double real root β and one negative real root γ,

P (T ) = a3(T − β)2(T − γ).

Using the notation introduced in Equation (2), Lemma 10 implies s0 = 0, s1 < 0 and s1,0 > 0,
as desired, since a3 < 0. In particular, we have proven that s0 = 0 and s1,0 > 0.

If s0 = 0 and s1,0 > 0, then s1 6= 0: if s1 = 0 then gcd(P, P ′) = P ′, P ′ divides P , and
this implies P (T ) = a3(T − β)3, Sres1(P ) ≡ 0 and s1,0 = 0. Hence s0 = 0, s1 6= 0 and
Sres1(P ) = gcd(P, P ′), and P (T ) = a3(T − β)2(T − γ) is the unique possible factorisation for
P (T ), with β 6= γ real numbers. Lemma 10 implies s1 = 2a33(γ − β)2 < 0, and since s1,0 > 0
and Lemma 10,

β = −s1,0
s1
,

we conclude β > 0. The equality

γ = − a0
a3β2

from Lemma 10 implies γ < 0, since a3 < 0 and a0 < 0. This proves that P (T ) has a positive
double real root β and a negative real root γ and, according to Theorem 7, the ellipses A and
B are externally tangent, as desired.

Since a3 < 0, previous condition characterising when two ellipses are externally tangent
reduces to

27a20a
2
3 − 18a0a1a2a3 + 4a0a

3
2 + 4a31a3 − a21a22 = 0, 9a0a3 − a1a2 > 0.

Next corollary shows how the same strategy used before, together with Descartes’ law of signs,
produce the characterisation for externally tangent ellipses introduced in [1].

Corollary 15. (see Type 7 in [1, Figures 1 and 4])
Ellipses A and B are externally tangent if and only if s0 = 0 and a1 > 0 or s0 = 0 and a2 > 0.

Proof. If the ellipses touch each other externally then, according to Theorem 7, we have that
P (T ) has one positive double real root β and one negative real root γ:

P (T ) = a3(T − β)2(T − γ).

Lemma 10 implies s0 = 0, and Descartes’ law of signs (Proposition 5) implies
Var(a3, a2, a1, a0) = 2. Since a3 < 0 and a0 < 0, the unique possibilities are a1 > 0 or
a2 > 0, as desired.
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If s0 = 0 then P (T ) has a multiple root and P (T ) = a3(T−β)3 or P (T ) = a3(T−β)2(T−γ),
with β and γ real numbers, and β 6= γ are the only two possibilities for the factorisation of
P (T ). Since a1 > 0 or a2 > 0, together with a3 < 0 and a0 < 0, we have Var(a3, a2, a1, a0) = 2.
Descartes’ law of signs (Proposition 5) implies that P (T ) has two positive real roots counted
with multiplicity. This excludes the first possibility and implies β > 0 (note that γ < 0
since P (T ), being the characteristic equation of two ellipses, has always one negative real root,
(Theorem 7 (2)). This implies, by using Theorem 7, that A and B are externally tangent.

Observe that previous conditions characterising when two ellipses are externally tangent
reduce to

27a20a
2
3 − 18a0a1a2a3 + 4a0a

3
2 + 4a31a3 − a21a22 = 0 and

(
a1 > 0 or a2 > 0

)
.

Corollary 16.
Ellipses A and B are externally tangent if and only if s0 = 0 and Var(−, a2, a1,−) = 2.

3.3 Solving the interference problem for two ellipses

Next diagram summarizes the approach described in this section for deciding the relative po-
sition of two given ellipses:

Var(−, a2, a1,−) Overlap

s0Separate Overlap

Ext. tangency

6= 2

= 2

> 0

< 0

= 0

The way we propose to decide the relative position of two given ellipses computes the value
of s0 only when it is really needed. This diagram can be specially useful when dealing with two
ellipses continuously depending on one parameter t, the interval where t lives is discretised and
it is required to decide the relative position of the two considered ellipses at every t value. A
different way of approaching this problem is introduced in the next subsection.

3.4 Interference analysis for two ellipses continuously depending on
one parameter

Results in this section allow to deal with the interference problem with two continuously chang-
ing ellipses. Let A(t) and B(t) be two ellipses depending continuously on t in a non–empty
interval I ⊂ R. Determining when they overlap or when they are separate requires only to
compute when they are externally tangent since they depend on t continuously: if t0 < t1,
A(t0) and B(t0) overlap (resp. are separate) and A(t1) and B(t1) are separate (resp. overlap)
then there exists t′ in (t0, t1) such that A(t′) and B(t′) are externally tangent. According to
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Theorem 14, determining the points where they are externally tangent is the same as solving
the system

s0(t) = 0, s1,0(t) > 0,

or the system
s0(t) = 0, Var(−, a2(t), a1(t),−) = 2,

for t in I .
If the entries of the matrices providing A(t) (resp. B(t)) are rational functions of t then

the ellipse and its interior definition do not change if we multiply them by plus or minus times
the common denominator of their entries that has constant sign in I: observe that, since A(t)
is always an ellipse for every t ∈ I, no denominator in the entries of A(t) can vanish in I so,
by Bolzano’s Theorem, the sign of the denominators is constant throughout I. The sign is
chosen according to the sign of the common denominator on I: plus if it is positive, minus
otherwise. Therefore, we can assume that the entries of the matrices providing A(t) and B(t)
are polynomials in t. Then, s0(t) and s1,0(t), as subresultants of the characteristic equation

P (t, T ) = a3(t)T
3 + a2(t)T

2 + a1(t)T + a0(t) ,

are also polynomials and the only possibilities arising are the following:

1. If the polynomial s0(t) is not identically zero then we compute the real roots of s0(t) in
I such that s1,0(t) > 0 (or such that a1(t) > 0 or a2(t) > 0): α1 < . . . < αm. These t-
values show where A(t) and B(t) are externally tangent, and we need only to decide what
happens in each interval (αi, αi+1) (with α0 = inf(I) and αm+1 = sup(I) being possibly
infinite). This is solved by taking any value ti in each interval and using Theorem 12:
if s0(ti) > 0 and a1(ti) > 0 or a2(ti) > 0 then they are separate on (αi, αi+1), otherwise
they overlap. If s0(t) has no real roots in I then the ellipses overlap or are separate for
all t in I: in order to determine their relative position we evaluate a2(t), a1(t) and s0(t)
at any α ∈ I (if Var(−, a2(α), a1(α),−) = 2 and s0(α) > 0 then the ellipses are separate,
otherwise, they overlap).

2. If the polynomial s0(t) is identically zero then A(t) and B(t) are externally tangent or
they overlap on the whole interval I. Take any t′ ∈ I: if s1,0(t

′) > 0 then they are
externally tangent for every t ∈ I; otherwise, they overlap for every t ∈ I.

While the first case is self explanatory, the second one requires to consider several cases
in order to conclude that the sign of s1,0(t) evaluated at any t′ ∈ I characterises the relative
position of A(t) and B(t).

First case: s0(t) ≡ 0 and s1(t) ≡ 0.
Observe that, when s0(t) and s1(t) are identically zero, A(t) and B(t) overlap for all t ∈ I: in
this case, P (t, T ) has a triple negative root for every t ∈ I.

Second case: s0(t) ≡ 0 and s1(t) 6≡ 0.
Now we consider the case where s0(t) vanishes identically but not s1(t). First we need the
following lemma (under these conditions).

11



Lemma 17.
Polynomials s1(t) and s1,0(t) have exactly the same roots in I.

Proof. If t0 ∈ I is a root of s1,0(t) and s1(t0) 6= 0 then s1(t0)T = gcd(P (t0, T ), P ′(t0, T )). This
implies that T = 0 is a root of P (t0, T ) and a0(t0) = 0, which is not possible since a0(t0) < 0.
Thus s1(t0) = 0.

Let t0 be a root of s1(t). If s1,0(t0) 6= 0 then Sres1(P (t0, T )) = s1,0(t0) is in the ideal
generated by P (t0, T ) and P ′(t0, T ), and so gcd(P (t0, T ), P ′(t0, T )) = 1 and s0(t0) 6= 0, which
is not possible since s0(t) is identically zero. Thus s1,0(t0) = 0.

The fact that s0(t) is identically zero implies, when s1(t
′) 6= 0 (t′ ∈ I), that

P (t′, T ) = a3(t
′)T 3 + a2(t

′)T 2 + a1(t
′)T + a0(t

′) = a3(t
′)(T − β(t′))2(T − γ(t′))

with β(t) and γ(t) the rational functions (see Lemma 10)

β(t) = −s1,0(t)
s1(t)

, γ(t) = − a0(t)s1(t)
2

a3(t)s1,0(t)2
= −a0(t)

a1(t)

1

β2(t)

and γ(t′) < 0.

Second case. First possibility: [s0(t) ≡ 0 and s1(t) 6≡ 0] s1(t) has no real roots.
If s1(t) has no real roots then β(t) has no (real) poles and no (real) roots and constant sign on
I. According to Lemma 10, we have for any t′ ∈ I

s1,0(t
′) = −2a3(t

′)3β(t′)(γ(t′)− β(t′))2

and sign(s1,0(t
′)) = sign(β(t′)). We conclude in this case that, when s1,0(t

′) > 0, A(t) and B(t)
are externally tangent over I and, when s1,0(t

′) < 0, A(t) and B(t) overlap (note that s1,0(t)
has no real roots as a consequence of Lemma 17).

Second case. Second possibility: [s0(t) ≡ 0 and s1(t) 6≡ 0] s1(t) has real roots.
Let t0 ∈ I be a real root of s1(t) (and a real root of s1,0(t) according to Lemma 17). Then there
exists α < 0 such that

P (t0, T ) = a3(t0)T
3 + a2(t0)T

2 + a1(t0)T + a0(t0) = a3(t0)(T − α)3 .

Being P (t, T ) a polynomial we have

lim
t→t0

P (t, T ) = P (t0, T ) = a3(t0)(T − α)3

and

lim
t→t0

(T − β(t))2(T − γ(t)) = lim
t→t0

(
T 3 − (2β(t) + γ(t))T 2 + β(t)(β(t) + 2γ(t))T − β(t)2γ(t)

)
=

= (T − α)3 = T 3 − 3αT 2 + 3α2T − α3 .

12



Equating coefficients allows us to write

lim
t→t0

(2β(t) + γ(t)) = lim
t→t0

(
2β(t)− a0(t)

a1(t)

1

β2(t)

)
= 3α

and

lim
t→t0

β(t) (β(t) + 2γ(t)) = lim
t→t0

(
β(t)2 − 2

a0(t)

a1(t)

1

β(t)

)
= 3α2 .

This implies automatically that the limit of the rational function β(t) when t goes to t0 is finite
and different from 0. Denoting L = limt→t0 β(t) 6= 0 and using that a0(t0)/a1(t0) = −α3, we
have then the equalities

2L− a0(t0)

a1(t0)

1

L2
= 2L+

α3

L2
= 3α, L2 − 2

a0(t0)

a1(t0)

1

L
= L2 +

2α3

L
= 3α2 .

Clearing denominators, we have that L must satisfy simultaneously

2L3 − 3αL2 + α3 = (2L+ α)(L− α)2 = 0, L3 − 3α2L+ 2α3 = (L+ 2α)(L− α)2 = 0

allowing us to conclude that

L = lim
t→t0

β(t) = lim
t→t0

γ(t) = α < 0.

If there exists t′ such that β(t′) > 0 then there exist two consecutive real roots t1 < t2 of s1(t)
such that t1 < t′ < t2 (t1 = −∞ or t2 = +∞ if needed when t′ is smaller or bigger, respectively,
than all real roots of s1(t)). But β(t) = −s1,0(t)/s1(t) is continuous in [t1, t2] and β(t1) < 0
and β(t2) < 0: therefore the exists τ ∈ (t1, t2) such that s1,0(τ) = 0. And this can not happen
since, after Lemma 17, s1(τ) = 0 and in (t1, t2) there is no real roots of s1(t). This implies that
in this possibility A(t) and B(t) overlap over I.

Summarizing: we can conclude analyzing all these cases and possibilities that the sign of s1,0(t)
evaluated at any t′ ∈ I characterizes the relative position of A(t) and B(t):

• if s1,0(t
′) > 0 then A(t) and B(t) are externally tangent for every t ∈ I.

• if s1,0(t
′) ≤ 0 then A(t) and B(t) overlap for every t ∈ I.

4 On the ellipsoids interference problem

The equation of a quadric A in R3 can be written as

a11X
2 + a22Y

2 + a33Z
2 + 2a12XY + 2a13XZ + 2a23Y Z + 2a14X + 2a24Y + 2a34Z + a44 = 0

or in matricial form A : XAX t = 0, where X = (X, Y, Z, 1), and A is the symmetric matrix

A =


a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

 .
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In what follows we assume that the matrix A is presented in such a way that the interior of
the ellipsoid A is defined by X TAX < 0. If the quadric is an ellipsoid (i.e., a non-degenerate
quadric with real affine points and no real points at infinity) then det(A) < 0.

Definition 18.
Given two quadrics A : XAX t = 0 and B : XBX t = 0, their characteristic equation is defined
as

P (T ) = det(TA+B) = det(A)T 4 + . . .+ det(B)

which is, if det(A) 6= 0, a quartic polynomial in T with real coefficients.

Next theorem was introduced in [28] and connects some relative positions (separation, ex-
ternal tangency and overlapping) of two ellipsoids with the sign of the real roots of their
characteristic equation. This is the starting point for the new approach we introduce in this
section when characterising the separation or the external tangency of two ellipsoids.

Theorem 19.
Let A and B be two real ellipsoids with the characteristic equation P (T ). Then:

1. The leading coefficient and the constant term of P (T ) are strictly negative.

2. The characteristic equation P (T ) has at least two negative real roots.

3. A and B are separated by a plane if and only if P (T ) has two positive different real roots.

4. A and B touch each other externally if and only if P (T ) has a positive double root.

The following lemmas show the formulae relating subresultants, roots and coefficients of a
degree 4 polynomial with a real and multiple root. These equalities will be the main tools for
allowing us to characterise when two ellipsoids are separate or externally tangent in terms of
the coefficients of their characteristic equation.

Lemma 20.
Let β and γ be real numbers, β 6= γ, and

P (T ) = a4T
4 + a3T

3 + a2T
2 + a1T + a0 = a4(T − β)3(T − γ).

Then (see Equation (2)):

s0 = s1 = 0, s2 = −3a34(γ − β)2, s22,1 − 4s2s2,0 = 0, β = −s2,1
2s2

, γ =
a0
a4β3

.

Proof. Since P (T ) has a triple root, s0 and s1 are equal to zero. Moreover, the polynomial
Sres2(P ) is a multiple of (T − β)2; actually, according to Definition 1, it is equal to

Sres2(P ) = −3a34(γ − β)2(T − β)2.

Thus, s2 = −3a34(γ − β)2, the discriminant of Sres2(P ) must vanish, that is, s22,1 − 4s2s2,0 = 0,
and the roots formulae can be deduced easily.
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Lemma 21.
Let β and γ be real numbers, β 6= γ, and

P (T ) = a4T
4 + a3T

3 + a2T
2 + a1T + a0 = a4(T − β)2(T − γ)2.

Then (see Equation (2)):

s0 = s1 = 0, s2 = −4a34(γ − β)2, s22,1 − 4s2s2,0 > 0, β, γ =
−s2,1 ±

√
s22,1 − 4s2s2,0

2s2
.

Proof. In this case, since P (T ) has two different double roots, s0 and s1 are equal to zero.
Moreover, the polynomial Sres2(P ) is a multiple of (T − β)(T − γ),

Sres2(P ) = −4a34(γ − β)2(T − β)(T − γ).

Thus, s2 = −4a34(γ−β)2, the discriminant of Sres2(P ) must be positive, s22,1−4s2s2,0 > 0, and
the roots formulae are obtained easily.

Lemma 22.
Let β 6= 0 be a real number, γ1 and γ2 be two different numbers (if they are real numbers,
different from β and different from 0) and

P (T ) = a4T
4 + a3T

3 + a2T
2 + a1T + a0 = a4(T − β)2(T − γ1)(T − γ2).

Then (see Equation (2)):

s0 = 0, s1 = 2a54(γ1 − γ2)2(β − γ2)2(β − γ1)2, β = −s1,0
s1
, (T − γ1)(T − γ2) =

P (T )

a4(T − β)2
.

Proof. Since P (T ) has only one double root, s0 is equal to zero but not s1. Formulae for β, γ1
and γ2 are a consequence of equality (1). Using Definition 1 we get

Sres1(P ) = 2a54(γ1 − γ2)2(β − γ2)2(β − γ1)2(T − β)

and s1 = 2a54(γ1 − γ2)2(β − γ2)2(β − γ1)2.

We will use freely in Subsection 4.4 that, when dealing with the factorization of P (T ) in the
previous lemma, the sign of s1 will separate the case of γ1 and γ2 being different real numbers
from the case of γ1 and γ2 being not real complex numbers and conjugate. Moreover, when γ1
and γ2 are real numbers, the sign of γ1γ2 agrees with the sign of a0a4.

Remark 23.
Given P (T ) = a4T

4 + a3T
3 + a2T

2 + a1T + a0, we have

s0 = a4(256a30a
3
4 − 192a20a1a3a

2
4 − 128a20a

2
2a

2
4 + 144a20a2a

2
3a4 − 27a20a

4
3 + 144a0a

2
1a2a

2
4

−6a0a
2
1a

2
3a4 − 80a0a1a

2
2a3a4 + 18a0a1a2a

3
3 + 16a0a

4
2a4 − 4a0a

3
2a

2
3 − 27a41a

2
4

+18a31a2a3a4 − 4a31a
3
3 − 4a21a

3
2a4 + a21a

2
2a

2
3),

s1 = 2a4
(
16a0a2a

2
4 − 6a0a

2
3a4 − 18a21a

2
4 + 14a1a2a3a4 − 3a1a

3
3 − 4a32a4 + a22a

2
3

)
and

s1,0 = −a4
(
48a0a1a

2
4 − 32a0a2a3a4 + 9a0a

3
3 − 3a21a3a4 + 4a1a

2
2a4 − a1a2a23

)
.

In what follows a4 and a0 will refer to the determinants of the matrices defining the two
considered ellipsoids and they will be always negative. Thus, in the formulae to be introduced
in the next subsections where the signs of s0, s1 and s1,0 are required, we can replace, when
possible, both a4 and a0 by −1.
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4.1 Characterising two externally tangent ellipsoids

Next theorem characterises when two ellipsoids are externally tangent in terms of the signs of
only three subresultants coefficients s0, s1 and s1,0 (instead of five as in [22]).

Theorem 24.
Ellipsoids A and B are externally tangent if and only if one of the two following conditions is
verified

1. s0 = 0, s1 = 0 and Var(a4, a3, a2, a1, a0) = 2.

2. s0 = 0, s1 < 0 and s1,0 > 0.

Proof. If the ellipsoids touch each other externally then, according to Theorem 19, P (T ) has
one positive double real root β and two negative real roots (equal or different). This implies,
for P (T ), two possible factorisations:

P (T ) = a4(T − β)2(T − γ)2, P (T ) = a4(T − β)2(T − γ1)(T − γ2),

with γ < 0 in the first case, and γi < 0 and γ1 6= γ2 in the second one.
In the first possibility, Lemma 21 implies s0 = s1 = 0 and Descartes’ law of signs (Propo-

sition 5) implies Var(a4, a3, a2, a1, a0) = 2, which corresponds to the first case. In the second
possibility, Lemma 22 implies s0 = 0 and s1 < 0 since a4 < 0. Formula relating β, s1 and s1,0
in Lemma 22 implies s1,0 > 0.

We now prove the other implication. If s0 = s1 = 0 then gcd(P, P ′) has degree two or three.
If deg(gcd(P, P ′)) = 3 (i.e., s2 = 0), then P ′ divides P , and P (T ) = a4(T − γ)4 with γ ∈ R.
According to Theorem 19, γ must be negative and by Descartes’ law of signs (Proposition 5),
we should have Var(a4, a3, a2, a1, a0) = 0. This leads to a contradiction if we assume initially
Var(a4, a3, a2, a1, a0) = 2.

As a consequence of the previous discussion we have s2 6= 0 and deg(gcd(P, P ′)) = 2. There
are only two possibilities under these conditions: either P (T ) = a4(T − β)3(T − γ) or P (T ) =
a4(T − β)2(T − γ)2, with β and γ different real numbers since, by Theorem 19, P (T ) has, at
least, two negative real roots counted with multiplicity. But we have Var(a4, a3, a2, a1, a0) = 2
and this happens only if P has a double negative root and a double positive root, according to
Descartes’ law of signs (Proposition 5). This implies, applying Theorem 19, that A and B are
externally tangent as desired.

If s0 = 0 and s1 < 0 then deg(gcd(P, P ′)) = 1 and the unique multiple root of P is
β = −s1,0/s1 (by Lemma 22). Since s1,0 > 0 we have that β is a positive double root of P (T ).
This implies, according to Theorem 19, that A and B are externally tangent as desired.

Note that the second condition in the previous theorem implies also Var(a4, a3, a2, a1, a0) =
2: this is again a consequence of Descartes’ law of signs together with the fact that −s1,0/s1 is
a positive double root of P (T ), and the other two roots of this polynomial must be real and
negative (according to Theorem 19 (2)).

The first condition in the previous theorem can be further simplified as shown in the lemma
and corollaries that follow.
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Lemma 25.
Let A and B be two ellipsoids such that s0 = s1 = 0. The following three conditions are
equivalent:

1. Var(a4, a3, a2, a1, a0) = 2.

2. a3a1 < 0 or a3 = 0, a2 > 0, a1 = 0.

3. a3a1 < 0 or a2 > 0.

Proof. If s0 = s1 = 0 and Var(a4, a3, a2, a1, a0) = 2, then there exist real numbers β > 0 and
γ < 0 such that

P (T ) = a4T
4 + a3T

3 + a2T
2 + a1T + a0 = a4(T − β)2(T − γ)2 =

= a4T
4 − 2a4(β + γ)T 3 + a4((β + γ)2 + 2βγ)T 2 − 2a4βγ(β + γ)T + a4β

2γ2.

This implies that
a3 = 0 ⇐⇒ a1 = 0,

and under any of these conditions,

a2 = 2a4βγ > 0.

Moreover, if a3 6= 0 then
a1a3 = 4a24βγ(β + γ)2 < 0.

These two restrictions imply that the eighteen sign conditions for a3, a2 and a1 such that
Var(−, a3, a2, a1,−) = 2, namely

[+,+,+], [−,+,−], [−,+,+], [−,−,+], [+,−,−], [+,+,−], [+, 0,−], [0,+,−], [+,−, 0],

[−, 0,+], [−,+, 0], [0,−,+], [+, 0, 0], [0,+, 0], [0, 0,+], [+, 0,+], [+,+, 0], [0,+,+],

reduce to only seven: those marked in gray. Since

• [−,+,+], [−,−,+], [−, 0,+] is equivalent to a3 < 0, a1 > 0, and

• [+,+,−], [+,−,−], [+, 0,−] is equivalent to a3 > 0, a1 < 0

we get the desired sign conditions when Var(a4, a3, a2, a1, a0) = 2 (and s0 = s1 = 0). This
shows that the equality in (1) implies the conditions in (2).

Conditions in (2) are included in the conditions in (3) and, taking into account all the
possibilities when a3a1 < 0 or a2 > 0, allows us to conclude that the conditions in (3) imply
the equality in (1).

Corollary 26.
Ellipsoids A and B are externally tangent if and only if one of the following conditions is verified

1. a3a1 < 0, s0 = 0, s1 = 0 or

2. a3 = 0, a2 = +2
√
a0a4, a1 = 0 or
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3. s0 = 0, s1 < 0, s1,0 > 0.

Proof. It is a direct consequence of Theorem 24, Lemma 25 (2) and, taking into account that,
if a3 = 0 and a1 = 0 then

s0 = 16a0a
2
4(4a0a4 − a22)2, s1 = 8a2a

2
4(4a0a4 − a22),

(see Remark 23).

Corollary 27.
Ellipsoids A and B are externally tangent if and only if one of the following conditions is verified

1. a3a1 < 0, s0 = 0, s1 = 0 or

2. a2 > 0, s0 = 0, s1 = 0 or

3. s0 = 0, s1 < 0, s1,0 > 0.

Proof. It is a direct consequence of Theorem 24 and Lemma 25 (3).

In [23], the authors characterise externally touching ellipsoids by computing the Jordan
form of A−1B. The two ellipsoids are externally tangent when such Jordan form is

α 1 0 0
0 α 0 0
0 0 β 0
0 0 0 γ

 , (4)

with α < 0 < β ≤ γ. Since the eigenvalues of A−1B are the roots of P (−T ), one can see that
case (1) (resp. (2)) in Theorem 24 corresponds to the case β = γ (resp. β < γ) in (4).

4.2 Characterising two separated ellipsoids

Next theorem characterises when two ellipsoids are externally tangent in terms of the signs of
only three subresultants coefficients s0, s1 and s1,0 (instead of five as in [22]). By Theorem 19,
recall that given two ellipsoids A and B, they are separated by a plane if and only if P (T ) has
two positive different real roots.

Theorem 28.
Ellipsoids A and B are separated if and only if Var(a4, a3, a2, a1, a0) = 2 and one of the two
following conditions is verified

1. s0 = 0, s1 < 0 and s1,0 < 0.

2. s0 < 0.

18



Proof. The ellipsoids are separated by a plane if and only if P (T ) has two different positive
real roots β1 and β2, and two negative real roots (equal or different). This implies, for P (T ),
two possible factorisations:

P (T ) = a4(T − β1)(T − β2)(T − γ)2, P (T ) = a4(T − β1)(T − β2)(T − γ1)(T − γ2),

with γ < 0 in the first case and γ1 6= γ2 (γ1 < 0, γ2 < 0) in the second one.
We will prove that the first factorisation is equivalent to Var(a4, a3, a2, a1, a0) = 2, s0 = 0,

s1 < 0 and s1,0 < 0 and that the second factorisation is equivalent to Var(a4, a3, a2, a1, a0) = 2
and s0 < 0.

If P (T ) = a4(T − β1)(T − β2)(T − γ)2 then, by Lemma 22, s0 = 0 and s1 < 0 and s1,0 < 0
must be also negative because the root of Sres1(P ) is γ. Moreover, Proposition 5 implies
Var(a4, a3, a2, a1, a0) = 2.

Suppose now that s0 = 0, s1 < 0 and s1,0 < 0, and Var(a4, a3, a2, a1, a0) = 2. On the one
hand, the fact that s0 = 0, s1 < 0 and s1,0 < 0 implies that P (T ) has a double negative root
by Lemma 22 and this implies

P (T ) = a4(T − β1)(T − β2)(T − γ)2,

with γ < 0. By Lemma 22, s1 = 2a54(β1−β2)2(γ−β2)2(γ−β1)2, and by hypothesis, s1 < 0 and
a4 < 0, so that, all roots must be real (otherwise, β1 and β2 being conjugate would render a4
and s1 of different signs). Since Var(a4, a3, a2, a1, a0) = 2, we have two different positive roots,
that is, β1 > 0 and β2 > 0.

If P (T ) = a4(T − β1)(T − β2)(T − γ1)(T − γ2) then the discriminant is positive and s0 is
negative by Equation (3). Obviously Var(a4, a3, a2, a1, a0) = 2. On the other hand, suppose
Var(a4, a3, a2, a1, a0) = 2 and s0 < 0. Then there are not multiple roots, at least two of them
are negative, and the discriminant is positive. Since the discriminant is positive, the other two
roots must be real. Since Var(a4, a3, a2, a1, a0) = 2, Proposition 5 implies that these other two
roots are positive.

In [23], the authors characterize ellipsoids separated by a plane by computing the Jordan
form of A−1B. The two ellipsoids are separated when such Jordan form is

α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 δ

 , (5)

with α < β < 0 < γ ≤ δ. Since the eigenvalues of A−1B are the roots of P (−T ), one can see
that case (1) (resp. (2)) in Theorem 28 corresponds to the case γ = δ (resp. β < γ) in (5).

4.3 Solving the interference problem for two ellipsoids

Compared with the best solution dealing with this problem (see [22]), our approach presents,
at least, two clear improvements:
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1. Less polynomials are involved: we need to deal only with s0, s1 and s1,0, while the solution
in [22] requires to use two additional polynomials (s2 and s2,0).

2. The way the relative position is determined is simpler than in [22]. We start by checking if
Var(−1, a3, a2, a1,−1) 6= 2 concluding overlapping. Otherwise, we compute s0: if s0 < 0
then the ellipsoids are separate, if s0 > 0 then they overlap, and if s0 = 0 then we compute
s1. When s0 = 0, if s1 > 0 then they overlap, if s1 = 0 then they are externally tangent,
and if s1 < 0 then we compute s1,0. When s0 = 0 and s1 < 0, the case s1,0 = 0 can
not happen (if this is the case then 0 is a root P (T ) and P (0) 6= 0: see first item in
Theorem 19) and if s1,0 > 0 then they are externally tangent, otherwise (s1,0 < 0) they
are separate.

Next diagram summarises the approach here described:

Var(−, a3, a2, a1,−) Overlap

s0Separate Overlap

s1Ext. tangency Overlap

s1,0Separate Ext. tangency

6= 2

= 2

< 0

> 0

= 0

= 0

> 0

< 0

< 0

> 0

The way we propose to decide the relative position of two given ellipsoids computes the
values of s0, s1 and s1,0 only when they are really needed. Moreover, as we will show next, our
solution requires less multiplications and additions than the solution introduced in [22] since it
uses less polynomials. According to Theorem 24 and Theorem 28 and once the characteristic
polynomial is known, we only need to compute s0, s1 and s1,0. Following [9] and [22] we proceed
in the following way by denoting first:

a4 = a4, a3 = −a3
4
, a2 =

a2
6
, a1 = −a1

4
, a0 = a0,

and determining:

? s1 → w3 d2 + 3 w2
1 − 9 d2 d3,

d2 = a3
2 − a2 a4, w1 = a1 a4 − a3 a2, a = w3 + 3 d3,

b = a1 w1 + a0 d2 + a2 d3,
d3 = a2

2 − a3 a1, w3 = a0 a4 − a3 a1, ? s1,0 → −(3 b a3 + a w1),
? s0 → 27 b2 − a3.

The searched polynomials s0, s1 and s1,0 are given up to a positive constant multiple. The
above expressions require 18 multiplications and 11 additions (against the 28 multiplications
and the 12 additions in [22]).
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This approach can be specially useful when dealing with two ellipsoids continuously depend-
ing on one parameter t, the interval where t lives is discretised and it is required to decide the
relative position of the two considered ellipsoids at every t value. A different way of approaching
this problem is introduced in the next subsection.

4.4 Interference analysis for two ellipsoids continuously depending
on one parameter

Results in this section allow to deal with the interference problem with two continuously chang-
ing ellipsoids. Let A(t) and B(t) be two ellipsoids depending continuously on t in a non–empty
interval I ⊂ R. Determining when they overlap or when they are separate requires only to
compute when they are externally tangent, since they depend on t continuously: if t0 < t1,
A(t0) and B(t0) overlap (resp. are separate) and A(t1) and B(t1) are separate (resp. overlap)
then there exists t′ in (t0, t1) such that A(t′) and B(t′) are externally tangent (see Theorem 5.1
in [22]). According to Theorem 24 this is the same as solving the two systems

s0(t) = 0, s1(t) = 0, Var(−, a3(t), a2(t), a1(t),−) = 2,

and
s0(t) = 0, s1(t) < 0, s1,0(t) > 0,

for t in I.
As in the case of ellipses (see Subsection 3.4), if the entries of the matrices providing A(t)

and B(t) are rational functions of t then we can assume that the entries of these matrices are
polynomials in t. Then, s0(t), s1(t) and s1,0(t), as subresultants of the characteristic equation

P (t, T ) = a4(t)T
4 + a3(t)T

3 + a2(t)T
2 + a1(t)T + a0(t) ,

are also polynomials.
The interference analysis next described depends on the nature of the polynomials s0(t) and

s1(t): if they are identically zero or not.

4.4.1 s0(t) 6≡ 0 (compare with Theorem 5.2 in [22])

If s0(t) has no real roots in I then its sign on I is constant. Taking any value t′ ∈ I:

• If s0(t
′) > 0 then A(t′) and B(t′) overlap since, according to the Example 5.4 in [17],

P (t′, T ) has has two real roots and two conjugate complex roots: these two different real
roots must be negative (see Theorem 19) and the considered ellipsoids overlap on I.

• If s0(t
′) < 0 and Var(−, a3(t′), a2(t′), a1(t′),−) = 2 then, according to the Example 5.4 in

[17], P (t′, T ) has four different real roots, two of them negative and two of them positive:
A(t′) and B(t′) are separate. If, for any t0 ∈ I, A(t0) and B(t0) overlap or they are
externally tangent then there exists t1 ∈ I such that s0(t1) = 0. But this is not possible
since s0(t) has no real roots in I. This implies that A(t) and B(t) are separate on I.
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• If s0(t
′) < 0 and Var(−, a3(t′), a2(t′), a1(t′),−) 6= 2 then A(t′) and B(t′) overlap (see

Theorem 28). In this case P (t′, T ) has four different real roots with, at most, only one
of them positive. If, for any t0 ∈ I, A(t0) and B(t0) are separate or they are externally
tangent then there exists t1 ∈ I such that s0(t1) = 0. But this is not possible since s0(t)
has no real roots in I. This implies that A(t) and B(t) overlap on I.

Let α1 < . . . < αm be the real roots of s0(t) in I such that s1(t) = 0, Var(−, a3, a2, a1,−) = 2
or s1(t) < 0, s1,0(t) > 0: these are the t–values in I where A(t) and B(t) are externally tangent.
Let α0 = inf(I), αm+1 = sup(I) and ti any number in (αi, αi+1): A(t) and B(t) are separate
in (αi, αi+1) if and only if Var(−, a3(ti), a2(ti), a1(ti),−) = 2, and s0(ti) < 0, or s0(ti) = 0,
s1(ti) < 0 and s1,0(ti) < 0 (0 ≤ i ≤ m).

4.4.2 s0(t) ≡ 0 and s1(t) 6≡ 0 (compare with Theorem 5.5 in [22])

We start by proceeding like in the ellipses case. We consider the rational function

β(t) = −s1,0(t)/s1(t)

(after removing common factors). Observe that, when s1(t0) 6= 0, T0 = β(t0) is a double root
of P (t0, T ). By continuity of P (t, T ), β(t0) is a triple root of P (t0, T ) when s1(t0) = 0 (see
the limit computation at Subsection 3.4 when dealing with the so called “Second case. Second
possibility”). Now, since B(t) is always an ellipsoid, a0(t) never vanishes in I, so T = 0 is never
a root of P (t, T ) and, then, β(t) is never zero. Moreover, since A(t) is always an ellipsoid,
a4(t) never vanishes in I, so 1/β(t), which, by continuity again, is a root of T 4P (t, 1/T ), never
vanishes. Therefore β(t) is a rational continuous function whose range for t ∈ I is either
contained in R>0 or in R<0, because it has neither zeroes nor poles.

Since s1(t) 6≡ 0, there exists α ∈ I such that s1(α) 6= 0 and s1,0(α) 6= 0 (α exists since both
polynomials have exactly the same real roots: Lemma 17 applies here too). Next we analyse
the three possibilities arising when considering the signs of s1(α) and s1,0(α):

1. If s1(α) > 0 then β(α) is a double root of P (α, T ) and, according to Lemma 22, the other
two roots of P (α, T ) are in C−R (A(α) and B(α) overlap). By Theorem 19 (2), β(α) < 0
and β(t) is negative on I and a multiple root of P (t, T ). In this case we proceed by
computing the real roots of s1(t): those roots such that Var(−, a3(t), a2(t), a1(t),−) = 2
give the values of t where they are externally tangent and the interval end points for
separation and overlapping. If s1(t) has no real roots in I then the ellipsoids overlap for
all t in I.

2. If s1(α) < 0 and s1,0(α) > 0 then β(α) is a double root of P (α, T ) and, according to
Lemma 22, β(α) > 0 and the other two roots of P (α, T ) are negative (by Theorem 19
(2)). This implies that β(t) is positive on I and a positive double root of P (t, T ) for
almost any t ∈ I. In this case, by continuity, A(t) and B(t) are externally tangent on I.

3. If s1(α) < 0 and s1,0(α) < 0 then β(α) is a double root of P (α, T ) and, according
to Lemma 22, β(α) < 0 and the other two roots of P (α, T ) are real and have the
same sign. This implies that β(t) is negative on I and a multiple root of P (t, T ).
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In this case we proceed by computing the real roots of s1(t): those roots such that
Var(−, a3(t), a2(t), a1(t),−) = 2 give the values of t where they are externally tangent
and the interval end points for separation and overlapping. If s1(t) has no real roots in
I then, when Var(−, a3(α), a2(α), a1(α),−) = 2, the ellipsoids are separate for all t in I,
otherwise they overlap for all t in I.

4.4.3 s0(t) ≡ 0 and s1(t) ≡ 0 (compare with Theorem 5.6 in [22])

Theorem 28 implies that A(t) and B(t) are not separate for any t ∈ I. Let α be in I. Then we
analyse the two possibilities arising by considering the value of Var(−, a3(α), a2(α), a1(α),−):

1. If Var(−, a3(α), a2(α), a1(α),−) = 2 then P (α, T ) = a4(T − β)2(T − γ)2, with β > 0 and
γ < 0. Repeating the argument used in Subsection 4.4.2, the roots must keep the sign
throughout all I, so this factorisation is kept for the whole interval I, and A(t) and B(t)
are externally tangent on I.

2. If Var(−, a3(α), a2(α), a1(α),−) 6= 2 then P (α, T ) = a4(T − β)2(T − γ)2, with γ < 0 and
β < 0, or P (α, T ) = a4(T − β)(T − γ)3, with γ < 0 and β < 0, or P (α, T ) = a4(T − γ)4,
with γ < 0. Repeating the argument used in Subsection 4.4.2, the roots must keep the
sign throughout all I, so these factorisations are kept for the whole interval I, and A(t)
and B(t) overlap on I.

4.5 Examples

The approach based on the formulae presented in the previous subsections allows to consider
the problem of determining the non interference intervals for two moving ellipsoids. First
experiments in Maple show a very good practical behaviour according to the performed exper-
imentation: we include here five concrete examples showing different situations that can arise
when dealing with this problem.

Example 29.
This is Example 5.1 from [22]. Let A(t) and B(t) be two moving ellipsoids defined by

(x+ 12t− 11)2

4
+ y2 + z2 = 1 and

(x− 3)2

4
+ (y − 4t+ 2)2 + (z − 4t+ 4)2 = 1,

respectively, where t ∈ [0, 1]. In this particular case,

P (t, T ) = −1

4
(T + 1)2(T 2 + (−68t2 + 96t− 34)T + 1),

s0(t) ≡ 0 and a3(t) = a1(t). Moreover,

s1(t) = s1,0(t) = −1

2
(17t2 − 24t+ 8)(17t2 − 24t+ 9)3

and, as a consequence, case 4.4.2(2) does not happen and we compute the real roots of s1(t):

α1 =
12− 2

√
2

17
≈ 0.5395042868 and α2 =

12 + 2
√

2

17
≈ 0.8722604191 .
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For both
Var(−, a3(αi), a2(αi), a1(αi),−) = Var(−, 0, 1/2, 0,−) = 2.

This implies, by Theorem 24 (1), that the ellipsoids touch each other externally at α1 and α2.
Next, in order to determine the relative position of A(t) and B(t) for t ∈ [0, 1], we choose

δ1 = 0 ∈ [0, α1), δ2 = 3/4 ∈ (α1, α2), δ3 = 1 ∈ (α2, 1],

and check the conditions of Theorems 24 and 28 at δ1, δ2 and δ3:

• Since s1(0) = s1,0(0) < 0 and Var(−, a3(0), a2(0), a1(0),−) = Var(−, 8, 33/2, 8,−) = 2,
A(t) and B(t) are collision free in [0, α1).

• Since s1(3/4) = s1,0(3/4) > 0, A(t) and B(t) overlap in (α1, α2).

• Since s1(1) = s1,0(1) < 0 and Var(−, a3(1), a2(1), a1(1),−) = Var(−, 1, 5/2, 1,−) = 2,
A(t) and B(t) are collision free in (α2, 1].

We remark here that using Theorem 3.10 in [22] to determine the relative position of A(t)
and B(t) requires additionally to compute the signs of s2(t) and s2,0(t) evaluated at α1 and α2.

Example 30.
This is Example 1 from [5]. Consider the two moving ellipsoids

A :
x2

4
+
y2

16
+
z2

4
= 1, B : x2 +

y2

9
+
z2

16
= 1

under the rigid motions defined by the following degree two rotations

(RA(t), RB(t)) =

=



−8 t2+8 t−1
8 t2−8 t+3

−4 t+2
8 t2−8 t+3

4 t−2
8 t2−8 t+3

4 t−2
8 t2−8 t+3

1
8 t2−8 t+3

2 (2 t−1)2
8 t2−8 t+3

−4 t+2
8 t2−8 t+3

2 (2 t−1)2
8 t2−8 t+3

1
8 t2−8 t+3

 ,


√
2(t−1)(3 t−1)
−6 t2+6 t−2

2 t(2 t−1)
−6 t2+6 t−2

√
2(t−1)2

−6 t2+6 t−2
√
2(2 t−1)

−6 t2+6 t−2
−2 t(t−1)
−6 t2+6 t−2

√
2(2 t−1)2

−6 t2+6 t−2

−
√
2t(3 t−2)

−6 t2+6 t−2
2 (2 t−1)(t−1)
−6 t2+6 t−2

√
2t2

−6 t2+6 t−2




and the degree three translations
(TA(t), TB(t)) =

=


 −8 t3 + 24 t2 − 6 t− 2

−24 t3 + 24 t2 + 6 t− 6

−32 t3 + 48 t2 − 12 t− 2

 ,


(
72− 24

√
2
)
t3 +

(
−156 + 72

√
2
)
t2 +

(
114− 72

√
2
)
t− 27 + 24

√
2

12 t− 6(
88− 24

√
2
)
t3 +

(
−168 + 72

√
2
)
t2 +

(
114− 72

√
2
)
t− 26 + 24

√
2


 .

Note that the denominators have no real roots.
If P (t, T ) denotes the numerator of det(TA(t)+B(t)) then its degree with respect to t is 14.

In order to compute s0, s1 and s1,0 we use the formulae in the Remark 23 and we will work with
ŝ0 = −s0/a4, ŝ1 = −s1/a4 and ŝ1,0 = −s1,0/a4. The corresponding degrees are degt(ŝ0) = 84,
degt(ŝ1) = 56 and degt(ŝ1,0) = 56. Since s0 is not identically zero we proceed as described in
the Subsection 4.4.1.
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In order to determine the external tangency instants we compute first the real roots of ŝ0.
It has six real roots, two of them are negative and four positive:

α1 ≈ −0.2439303678, α2 ≈ −0.1859966702, α3 = 0.5,

α4 ≈ 0.6329555326, α5 ≈ 0.7719039167, α6 ≈ 0.9007790307.

Since gcd(ŝ0, ŝ1) = 1, according to Theorem 24, A(αi) and B(αi) are externally tangent if and
only if ŝ1(αi) < 0 and ŝ1,0(αi) > 0 and this happens only for α1, α2, α3 and α6. Moreover,
using Theorem 28, we have

• ŝ1(α4) < 0, ŝ1,0(α4) < 0, Var(−, a3(α4), a2(α4), a1(α4),−) = 0: A(α4) and B(α4) overlap.

• ŝ1(α5) < 0, ŝ1,0(α5) < 0, Var(−, a3(α5), a2(α5), a1(α5),−) = 0: A(α5) and B(α5) overlap.

This implies that A(t) and B(t) overlap when t ∈ (α3, α6). In order to check what happens in
the other intervals determined by α1, α2, α3 and α6, we define

δ1 = −0.3 < α1 < δ2 = −0.2 < α2 < δ3 = 0 < α3 < α6 < δ4 = 1

and compute the relative position of A(δi) and B(δi):

• ŝ0(δ1) < 0 and Var(−, a3(δ1), a2(δ1), a1(δ1),−) = 2: A(δ1) and B(δ1) are separate.

• ŝ0(δ2) > 0: A(δ2) and B(δ2) overlap.

• ŝ0(δ3) < 0 and Var(−, a3(δ3), a2(δ3), a1(δ3),−) = 2: A(δ3) and B(δ3) are separate.

• ŝ0(δ4) < 0 and Var(−, a3(δ4), a2(δ4), a1(δ4),−) = 2: A(δ4) and B(δ4) are separate.

This allows us to conclude that:

• A(t) and B(t) overlap when t ∈ (α1, α2) and t ∈ (α3, α6).

• A(t) and B(t) are separate when t ∈ (−∞, α1), t ∈ (α2, α3) and t ∈ (α6,+∞).

• A(t) and B(t) are externally tangent when t = α1, t = α2, t = α3 and t = α6.

Figure 1 shows the position of the two ellipsoids for different values of t.

Example 31.
This example shows external tangency without overlapping. Let

A :
x2

4
+
y2

9
+
z2

16
= 1, B :

x2

4
+
y2

16
+
z2

4
= 1,

under the translations

TA(t) =

 0
7
0

 , TB(t) =

 0
0

t−4
2

 .
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Figure 1: A(t) and B(t) when t = δ1 < α1 < δ2 < α2 < δ3 < α3 < α5 < α6 < δ4.

In this example, coefficients a4(t) and a0(t) of P (t, T ) are constants, and a3(t), a2(t) and
a1(t) are different polynomials of degree 2. Moreover, s0(t) is a polynomial of degree 12 and
we apply 4.4.1(1). The real roots of s0(t) are

α1 ≈ −14.3303027798, α2 = 4 and α3 ≈ 22.3303027798,

and we have

s1(α1) < 0, s10(α1) < 0; s1(α2) < 0, s10(α2) > 0; s1(α3) < 0, s10(α3) < 0.

This implies, by Theorem 24 (2), that the ellipsoids touch each other externally only at α2 = 4.
Next we consider values less and bigger than α2, for example, 0 and 5. Since s0(0) < 0,
s0(5) < 0, and Var(−, a3(0), a2(0), a1(0),−) = Var(−, a3(5), a2(5), a1(5),−) = 2, we conclude
that the ellipsoids are externally tangent for t = α2 and they are separate for t 6= α2.

Example 32.
Consider the following ellipsoids

A :
x2

4
+
y2

9
+
z2

16
= 1, B :

x2

4
+
y2

9
+
z2

4
= 1,

moving following the translations

TA(t) =


2(t2−1)
t2+1
−6t
t2+1

0

 , TB(t) =

 −
2(t2−2)
t2+1
6t

t2+1

0

 .
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If P (t, T ) denotes the numerator of det(TA(t)+B(t)) then we have degt(ai) = 4 (for 0 ≤ i ≤ 4),

degt(s0) = 26, degt(s1) = 20, degt(s1,0) = 20,

and we follow 4.4.1(1).
The polynomial s0(t) has two real roots,

α1 ≈ −1.118033989, α2 ≈ 1.118033989,

with s1(α1) < 0, s10(α1) > 0 and s1(α2) < 0, s10(α2) > 0. This implies, by Theorem 24 (2),
that the ellipsoids touch each other externally at α1 and α2. Finally, in order to determine the
relative position of A(t) and B(t) for t in R, we choose

δ1 = −2 < α1, δ2 = 0 ∈ (α1, α2), δ3 = 2 > α2,

and check the conditions of Theorems 24 and 28 at δ1, δ2 and δ3 in order to conclude:

• Since s0(δ1) > 0, A(t) and B(t) overlap for t < α1.

• Since s0(δ2) < 0 and Var(−, a3(δ2), a2(δ2), a1(δ2),−) = 2, A(t) and B(t) are separate in
(α1, α2).

• Since s0(δ2) > 0, A(t) and B(t) overlap for t > α2.

Example 33.
We consider again the ellipsoids in Example 32 but now moving them in a way such that they
are always externally tangent. This is done by using the translations

TA(t) =


2(t2−1)
t2+1
−6t
t2+1

0

 , TB(t) =

 −
2(t2−1)
t2+1
6t

t2+1

0

 .

In this case we have

P (t, T ) = det(TA(t) +B(t)) = − 1

576
(T + 1)(T + 4)(T − 1)2,

with s0 = 0, s1 < 0 and s1,0 > 0 for all t ∈ R. Second condition in Theorem 24 is verified for
all t confirming that they are always externally tangent.

Remark 34.
The main difficulty of this approach when applied to two moving ellipsoids relies on the (high)
degree of s0 since its real roots must be determined. But there are very efficient software
packages for computing very fast and accurately real roots of univariate polynomials: for all
examples in this section it was enough to use the fsolve function in Maple with a precision of
10 digits except for Example 30. For this example, since ŝ0 has degree 84 and its coefficients
involve

√
2 and huge integer numbers it was needed instead to use the Isolate function from

the RootFinding package with the option ABND activated, in order to compute correctly the
six real roots of ŝ0. Moreover, in order to guarantee the correct evaluation of ŝ1 and ŝ10 at the
real roots of ŝ0 (when required), it was needed to increase the precision from 10 to 35 digits.
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5 Conclusions

We have characterised when two ellipses/ellipsoids are separate, overlapping or externally tan-
gent. Our derivation is based on the use of subresultants and Descartes’ law of signs in the
algebraic conditions provided in [21, 28], translating the configurations of the two considered
ellipses/ellipsoids to the root patterns of their characteristic polynomial. The explicit formulae
here introduced involve only three subresultants coefficients of the characteristic polynomial
and its derivative for ellipsoids and only one for ellipses. Moreover we have applied these
formulae for the collision detection for two moving ellipses/ellipsoids.

From our point of view, three are our main contributions. The first one is mathematical
since proofs from [21, 22] are greatly simplified (less subresultants are used and the proofs
avoid, for example, using Puisseux expansions as in [22] for the ellipsoids case). The second
one is related with the applications of the derived formulae: existing formulae for ellipses and
ellipsoids were explicitly used in [8, 14, 15, 18, 19, 24, 25, 29]. And the last one relates to the
computational cost since the new formulae requires less multiplications than the previous ones:
we cannot compete with the strategy solving the ellipsoids interference problem by including the
given ellipsoids inside spheres or boxes, but our more expensive test can be used to guarantee
the ellipsoids to be separated in cases where the cheaper approaches before mentioned fail.

In the future we will study if our approach can also be adapted to develop explicit formulae
to solve the same problems considered here for two general conics or quadrics with a fixed type
(see for example [3, 4]).
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