Browsing by Subject "Transcriptomics"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- PublicationEmbargoA rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp.(Elsevier, 2014-03-27) Cusido, Rosa M.; Onrubia, Miriam; Sabater Jara, Ana Belén; Moyano, Elisabeth; Bonfill, Mercedes; Goossens, Alain; Pedreño, María Angeles; Palazón, Javier; Biología VegetalTaxol is a complex diterpene alkaloid scarcely produced in nature and with a high anticancer activity. Biotechnological systems for taxol production based on cell cultures of Taxus spp. have been developed, but the growing commercial demand for taxol and its precursors requires the optimization of these procedures. In order to increase the biotechnological production of taxol and related taxanes in Taxus spp. cell cultures, it is necessary not only to take an empirical approach that strives to optimize in-put factors (cell line selection, culture conditions, elicitation, up-scaling, etc.) and out-put factors (growth, production, yields, etc.), but also to carry out molecular biological studies. The latter can provide valuable insight into how the enhancement of taxane biosynthesis and accumulation affects metabolic profiles and gene expression in Taxus spp. cell cultures. Several rational approaches have focused on studying the transcriptomic profiles of key genes in the taxol biosynthetic pathway in Taxus spp. cell cultures treated with elicitors such as methyl jasmonate, coronatine and cyclodextrins in relation with the taxane pattern, production and excretion to the culture medium. These studies have provided new insights into the taxol biosynthetic pathway and its regulation. Additionally, identifying genes with low levels of expression even in the presence of elicitors, together with metabolomics studies, has shed light on the limiting steps in taxol biosynthesis and could help define suitable metabolic targets for engineering with the main aim of obtaining highly productive Taxus cultured cells. In this review, we have summarized the latest endeavors to enhance the molecular understanding of the action mechanism of elicitors in Taxus spp. cell cultures. Developments in the ongoing search for new and more effective elicitation treatments and the application of metabolic engineering to design new transgenic cell lines of Taxus with an improved capacity for taxane production are described.
- PublicationOpen AccessCommensal Bacteria Regulate Gene Expression and Differentiation in Vertebrate Olfactory Systems Through Transcription Factor REST(Oxford University Press, 2019-08-14) Casadei, Elisa; Tacchi, Luca; Lickwar, Colin R.; Espenschied, Scott T.; Davison, James M.; Muñoz, Pilar; Rawls, John F.; Salinas, Irene; Sanidad AnimalSensory systems such as the olfactory system detect chemical stimuli and thereby determine the relationships between the animal and its surroundings. Olfaction is one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex microbial communities, but microbial contribution to host olfactory gene expression remains unknown. In this study, we show that colonization of germ-free zebrafish and mice with microbiota leads to widespread transcriptional responses in olfactory organs as measured in bulk tissue transcriptomics and RT-qPCR. Germ-free zebrafish olfactory epithelium showed defects in pseudostratification; however, the size of the olfactory pit and the length of the cilia were not different from that of colonized zebrafish. One of the mechanisms by which microbiota control host transcriptional programs is by differential expression and activity of specific transcription factors (TFs). REST (RE1 silencing transcription factor, also called NRSF) is a zinc finger TF that binds to the conserved motif repressor element 1 found in the promoter regions of many neuronal genes with functions in neuronal development and differentiation. Colonized zebrafish and mice showed increased nasal expression of REST, and genes with reduced expression in colonized animals were strongly enriched in REST-binding motifs. Nasal commensal bacteria promoted in vitro differentiation of Odora cells by regulating the kinetics of REST expression. REST knockdown resulted in decreased Odora cell differentiation in vitro. Our results identify a conserved mechanism by which microbiota regulate vertebrate olfactory transcriptional programs and reveal a new role for REST in sensory organs.
- PublicationOpen AccessExtensive dynamic changes in the human transcriptome and its circadian organization during prolonged bed rest(Cell Press, 2024-03-15) Archer, Simon N.; Möller-Levet, Carla; Bonmatí-Carrión, María Ángeles; Laing, Emma E.; Derk-Jan, Dijk; Anatomía Humana y PsicobiologíaPhysiological and molecular processes including the transcriptome change across the 24-h day, driven by molecular circadian clocks and behavioral and systemic factors. It is not known how the temporal organization of the human transcriptome responds to a long-lasting challenge. This may, however, provide insights into adaptation, disease, and recovery. We investigated the human 24-h time series transcriptome in 20 individuals during a 90-day constant bed rest protocol. We show that the protocol affected 91% of the transcriptome with 76% of the transcriptome still affected after 10 days of recovery. Dimensionality-reduction approaches revealed that many affected transcripts were associated with mRNA translation and immune function. The number, amplitude, and phase of rhythmic transcripts, including clock genes, varied significantly across the challenge. These findings of long-lasting changes in the temporal organization of the transcriptome have implications for understanding the mechanisms underlying health consequences of conditions such as microgravity and bed rest.
- PublicationOpen AccessThe transcriptome of pig spermatozoa, and its role in fertility(MDPI, 2020-02-25) Álvarez Rodríguez, Manuel; Martínez, Cristina; Wright, Dominic; Barranco, Isabel; Roca, Jordi; Rodríguez Martínez, Heriberto; Medicina y Cirugía AnimalIn the study presented here we identified transcriptomic markers for fertility in the cargo of pig ejaculated spermatozoa using porcine-specific micro-arrays (GeneChip® miRNA 4.0 and GeneChip® Porcine Gene 1.0 ST). We report (i) the relative abundance of the ssc-miR-1285, miR-16, miR-4332, miR-92a, miR-671-5p, miR-4334-5p, miR-425-5p, miR-191, miR-92b-5p and miR-15b miRNAs, and (ii) the presence of 347 up-regulated and 174 down-regulated RNA transcripts in high-fertility breeding boars, based on differences of farrowing rate (FS) and litter size (LS), relative to low-fertility boars in the (Artificial Insemination) AI program. An overrepresentation analysis of the protein class (PANTHER) identified significant fold-increases for C-C chemokine binding (GO:0019957): CCR7, which activates B- and T-lymphocytes, 8-fold increase), XCR1 and CXCR4 (with ubiquitin as a natural ligand, 1.24-fold increase), cytokine receptor activity (GO:0005126): IL23R receptor of the IL23 protein, associated to JAK2 and STAT3, 3.4-fold increase), the TGF-receptor (PC00035) genes ACVR1C and ACVR2B (12-fold increase). Moreover, two micro-RNAs (miR-221 and mir-621) were down- and up-regulated, respectively, in high-fertility males. In conclusion, boars with different fertility performance possess a wide variety of differentially expressed RNA present in spermatozoa that would be attractive targets as non-invasive molecular markers for predicting fertility.