Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
Repository logo

Repositorio Institucional de la Universidad de Murcia

Repository logoRepository logo
  • Communities & Collections
  • All of DSpace
  • menu.section.collectors
  • menu.section.acerca
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
  1. Home
  2. Browse by Subject

Browsing by Subject "Hypoxic-ischemic brain damage"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Olig2 knockdown alleviates hypoxic- ischemic brain damage in newborn rats
    (Universidad de Murcia, Departamento de Biologia Celular e Histiologia, 2021) Yang, Lijun; Cui, Hong
    Objectives. Neuronal damage is an important pathological mechanism in neonatal hypoxic-ischemic brain damage (HIBD). We found in our previous studies that oligodendrocyte transcription factor 2 (Olig2) downregulation was able to increase cell survival in the brain. However, the specific mechanism has yet to be clarified. Methods. Sprague-Dawley rats aged 3 d were randomly divided into three groups: the normal control group, the Olig2-RNAi group, and the RNAi-negative control group. The normal control group received no treatment, the Olig2-RNAi group received the Olig2 RNAi adenovirus, and the RNAi-negative control group was given the control adenovirus after the completion of the HIBD model. Infarct lesions and their volumes were observed by triphenyltetrazolium chloride (TTC) staining 3 d after the completion of the adenovirus local injection. The condition of the tissue was characterized by hematoxylin-eosin staining 7 d after the model was established, and cell viability was determined by azure methylene blue staining. Subcellular damage was analyzed by transmission electron microscopy. Rotarod analysis was performed to detect moving behavior ability and an Morris water maze assay was conducted to evaluate the memory. Results. TTC staining showed a smaller brain injury area in the Olig2-RNAi group than in the RNAi-negative control group. Hematoxylin-eosin staining indicated the presence of severe cell injury in the hippocampal region after HIBD, which improved after Olig2 knockdown. Azure methylene blue staining and electron microscopy results suggested that the cells improved after Olig2 knockdown. The rats stayed longer on the rotating rod, and their latency in the water maze test was gradually shortened relative to that of the rats in the Olig2-RNAi negative control group. Conclusion. Olig2 knockdown can promote the repair of hypoxic-ischemic brain damage in newborn rats.
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Treatment and new progress of neonatal hypoxic-ischemic brain damage
    (Universidad de Murcia, Departamento de Biologia Celular e Histiologia, 2020) Yang, Lijun; Zhao, Hehua; Cui, Hong
    Neonatal hypoxic ischemia (HI) results in different extents of brain damage, and immature brain tissue is particularly sensitive to the stimulation of HI. Hypoxic-ischemic brain damage (HIBD) is a common and serious nervous system disease in neonates, for both full-term infants and preterm infants, and is one of the main causes of neonatal death. The surviving infants are often associated with cerebral palsy, mental retardation, and other sequelae, which severely affect quality of life. For term infants, hypoxia and ischemia mainly affect gray matter, whereas in preterm infants, the white matter. However, up to now, inadequate standards and specific measures that can be used to treat hypoxic-ischemic brain injury are available. Recently, in addition to supportive therapy and symptomatic treatment, research on the treatment of hypoxic-ischemic brain injury has focused on the following aspects: hypothermia therapy, stem cell therapy, neuroprotective agents, ibuprofen, and combination therapy. In this review, we will summarize the treatment of HIBD and make suggestions for the future treatment direction

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Accessibility
  • Send Feedback