Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
Repository logo

Repositorio Institucional de la Universidad de Murcia

Repository logoRepository logo
  • Communities & Collections
  • All of DSpace
  • menu.section.collectors
  • menu.section.acerca
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
  1. Home
  2. Browse by Subject

Browsing by Subject "Hormones"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Characterisationof thyroid medullary carcinoma TT cell line
    (Murcia : F. Hernández, 1997) Zabel, M.; Grzeszkowak, J.
    -
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Diversity and dynamics of fish ovaries: Insights into reproductive strategies, hormonal regulation, and ovarian development
    (Universidad de Murcia, Departamento de Biologia Celular e Histiologia, 2025) Mokhtar, Doaa M.
    Fish ovaries exhibit a remarkable diversity in shape, size, and organization, reflecting the myriad reproductive strategies employed by different species. This review delves into the intricate biology of fish ovaries, highlighting their structural diversity and the hormonal regulation that governs ovarian development and oocyte maturation. Key hormones include pituitary gonadotropins (GTHs) and maturation-inducing hormones (MIHs), which initiate oocyte growth and maturation. GTHs stimulate ovarian production of estradiol-17β and 17α,20β-DP, which induce oocyte maturation via MPF formation. Sex steroids like estrogens and progestogens, synthesized from cholesterol, play crucial roles. Other hormones, including growth hormone, prolactin, thyroid hormones, IGFs, ACTH, and melatonin, influence ovarian activity. The review also explores the varied reproductive strategies among fish, including oviparity and viviparity, and discusses how environmental factors like water temperature and photoperiod influence ovarian histology. Understanding the complex interplay between these factors is essential for advancing fisheries management, conservation, and aquaculture practices. Additionally, the evolutionary trajectory of fish ovaries underscores their adaptation to diverse ecological niches, contributing to the survival and reproductive success of fish species. The ovarian stroma provides structural support and houses various cell types, including dendritic cells (DCs), endocrine cells, and telocytes, contributing to follicle growth and hormone production, essential for reproductive success in fish. Fish ovaries are a crucial aspect of fish biology, with their structure and function intricately regulated by hormonal, environmental, and seasonal factors.
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    New insights on hormones and factors that modulate Sertoli cell metabolism
    (Universidad de Murcia. Departamento de Biología Celular e Histología, 2016) Rato, Luís; Meneses, Maria João; Silva, Branca M.; Sousa, Mário; Alves, Marco G.; Oliveira, Pedro F.
    Sertoli cells (SCs) play a key role in spermatogenesis by providing the physical support for developing germ cells and ensuring them the appropriate nutrients, energy sources, hormones, and growth factors. The control of SCs metabolism has been in the spotlight for reproductive biologists, since it may be crucial to determine germ cells’ fate. Indeed, the maintenance of spermatogenesis is highly dependent on the metabolic cooperation established between SCs and germ cells, though this event has been overlooked. It depends on the orchestration of various metabolic pathways and an intricate network of signals. Several factors and/or hormones modulate the metabolic activity of SCs, which are major targets for the hormonal signalling that regulates spermatogenesis. Any alteration in the regulation of these cells’ metabolic behaviour may compromise the normal development of spermatogenesis and consequently, male fertility. In this context, SC metabolism arises as a key regulation point for spermatogenesis. Herein, we present an up-to-date overview on the impact of hormones and factors that modulate SC metabolism, with special focus on glycolytic metabolism, highlighting their relevance in determining male reproductive potential.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Accessibility
  • Send Feedback