Publication:
Grading lung neuroendocrine tumors: Controversies in search of a solution

dc.contributor.authorPelosi, Giuseppe
dc.contributor.authorPattini, Linda
dc.contributor.authorMorana, Giovanni
dc.contributor.authorFabbri, Alessandra
dc.contributor.authorFaccinetto, Alex
dc.contributor.authorFazio, Nicola
dc.contributor.authorValeri, Barbara
dc.contributor.authorSonzogni, Angelica
dc.date.accessioned2022-02-15T08:50:37Z
dc.date.available2022-02-15T08:50:37Z
dc.date.issued2017
dc.description.abstractBackground. Pathological grading of tumors is a way to measure biological aggressiveness. In lung neuroendocrine tumors (NET), grading is tautologically included into the current 2015 WHO histologic classification. Little is known, however, about alternative grading systems in lung NET. Methods. Through an extensive search of the English literature on lung NET (updated to April 2016), the following key questions were addressed: a) current concepts of grading; b) clinicians’ requests for grading; c) functional parameters for grading; d) Ki-67 labeling index (LI) for grading; e) towards an effective pathology grading system. Results. There is some room for inconsistency in the histologic classification of lung NET, likely due to the varying attribution of defining criteria. Innovative diffusion-weighted imaging upon magnetic resonance or molecular analysis could help separate indolent from aggressive lung NET, thus integrating a grading approach other than histology. Troubles in the clinical handling of metastatic or individual tumors when relying on morphology alone support the development of a lungspecific grading system for the more accurate prediction of prognosis and planning therapy in individual patients. To integrate the 2015 WHO classification using innovative grading based on Ki-67 LI, mitotic count and necrosis, a new proposal is emerging where three categories of lung NET are identified, namely Lu-NET G1, Lu-NET G2 and Lu-NET G3, which would allow tumors with similar behavior and therapy to be better handled according to their own biological potential. Conclusion. A new formulation of lung NET grading could have clinical relevance for the individual handling of patients. Key words:es
dc.formatapplication/pdfes
dc.format.extent19es
dc.identifier.doiDOI: 10.14670/HH-11-822
dc.identifier.eisbnHistology and Histopathology, Vol.32, nº3, (2017)es
dc.identifier.issn1699-5848
dc.identifier.issn0213-3911
dc.identifier.urihttp://hdl.handle.net/10201/117046
dc.languageenges
dc.publisherUniversidad de Murcia. Departamento de Biología Celular e Histologíaes
dc.relationSin financiación externa a la Universidades
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNeuroendocrinees
dc.subjectTumores
dc.subjectLunges
dc.subjectGradinges
dc.subjectKi-67es
dc.subjectGenees
dc.subjectMagnetic resonancees
dc.subject.otherCDU::6 - Ciencias aplicadas::61 - Medicina::616 - Patología. Medicina clínica. Oncologíaes
dc.titleGrading lung neuroendocrine tumors: Controversies in search of a solutiones
dc.typeinfo:eu-repo/semantics/articlees
dspace.entity.typePublicationes
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pelosi-32-223-241-2017.pdf
Size:
11.81 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.39 KB
Format:
Item-specific license agreed upon to submission
Description: