Person:
García Pallarés, Jesús

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
García Pallarés
First Name
Jesús
Name
García Pallarés, Jesús

Search Results

Now showing 1 - 3 of 3
  • Publication
    Embargo
    Level of effort: a reliable and practical alternative to the velocity-based approach for monitoring resistance training
    (Lippincott, Williams & Wilkins, 2022-11) Hernández Belmonte, Alejandro; Courel Ibáñez, Javier; Conesa Ros, Elena; Martínez Cava, Alejandro; García Pallarés, Jesús; Actividad Física y Deporte
    This study analyzed the potential of the level of effort methodology as an accurate indicator of the programmed relative load (percentage of one-repetition maximum [%1RM]) and intraset volume of the set during resistance training in the bench press, full squat, shoulder press, and prone bench pull exercises, through 3 specific objectives: (a) to examine the intersubject and intrasubject variability in the number of repetitions to failure (nRM) against the actual %1RM lifted (adjusted by the individual velocity), (b) to investigate the relationship between the number of repetitions completed and velocity loss reached, and (c) to study the influence of the subject's strength level on the aforementioned parameters. After determining their individual load-velocity relationships, 30 subjects with low (n = 10), medium (n = 10), and high (n = 10) relative strength levels completed 2 rounds of nRM tests against their 65, 75, 85, and 95% 1RM in the 4 exercises. The velocity of all repetitions was monitored using a linear transducer. Intersubject and intrasubject variability analyses included the 95% confidence intervals (CIs) and the the standard error of measurement (SEM), respectively. Coefficient of determination (R2) was used as the indicator of relationship. nRM showed a limited intersubject (CI ≤ 4 repetitions) and a very low intrasubject (SEM ≤1.9 repetitions) variability for all the strength levels, %1RM, and exercises analyzed. A very close relationship (R2 ≥ 0.97) between the number of repetitions completed and the percentage of velocity loss reached (from 10 to 60%) was found. These findings strengthen the level of effort as a reliable, precise, and practical strategy for programming resistance training.
  • Publication
    Open Access
    A comprehensive analysis of the velocity-based method in the shoulder press exercise: stability of the load-velocity relationship and sticking region parameters
    (Termedia Publishing, 2020-08-31) Hernández Belmonte, Alejandro; Martínez Cava, Alejandro; Morán Navarro, Ricardo; Courel Ibáñez, Javier; García Pallarés, Jesús; Actividad Física y Deporte
    The purpose of this study was threefold: i) to analyse the load-velocity relationship of the shoulder press (SP) exercise, ii) to investigate the stability (intra-individual variability) of this load-velocity relationship for athletes with different relative strength levels, and after a 10-week velocity-based resistance training (VBT), and iii) to describe the velocity-time pattern of the SP: first peak velocity [Vmax1], minimum velocity [Vmin], and second peak velocity [Vmax2]. This study involves a cross-sectional (T1, n = 48 subjects with low, medium and high strength levels) and longitudinal (T2, n = 24 subjects randomly selected from T1 sample) design. In T1, subjects completed a progressive loading test up to the 1RM in the SP exercise. The barbell mean, peak and mean propulsive velocities (MV, PV and MPV) were monitored. In T2, subjects repeated the loading test after 10 weeks of VBT. There were very close relationships between the %1RM and velocity attained in the three velocity outcomes (T1, R2: MV = 0.970; MPV = 0.969; PV = 0.954), being even stronger at the individual level (T1, R2 = 0.973–0.997). The MPV attained at the 1RM (~0.19 m·s-1) was consistent among different strength levels. Despite the fact that 1RM increased ~17.5% after the VBT programme, average MPV along the load-velocity relationship remained unaltered between T1 and T2 (0.69 ± 0.06 vs. 0.70 ± 0.06 m·s-1). Lastly, the three key parameters of the velocity-time curve were detected from loads > 74.9% 1RM at 14.3% (Vmax1), 46.1% (Vmin), and 88.7% (Vmax2) of the concentric phase. These results may serve as a practical guideline to effectively implement the velocity-based method in the SP exercise.
  • Publication
    Open Access
    Wingate test, when time and overdue fatigue matter: validity and sensitivity of two time-shortened versions
    (MDPI, 2020-11-11) Hernández Belmonte, Alejandro; Buendía-Romero, Ángel; Martínez Cava, Alejandro; Courel Ibáñez, Javier; Mora-Rodríguez, Ricardo; García Pallarés, Jesús; Actividad Física y Deporte
    This study aimed to analyze the validity and sensitivity of two time-shortened Wingate anaerobic tests (WAnTs), by means of three phases. In Phase A, 40 participants performed a traditional 30 s WAnT, whereas the first 15 s (WAnT15) and 20 s (WAnT20) were used to elaborate two predictive models. In Phase B, another 30 s WAnT was performed by 15 different volunteers to examine the error of these models (cross-validation). Finally, in Phase C, a 30 s WAnT was registered before and after a 10-week velocity-based training conducted by 22 different participants (training group, TRAIN = 11; control group that fully refrained from any type of training, CONTROL = 11). Power changes (in Watts, W) after this training intervention were used to interpret the sensitivity of the time-shortened WAnT. Adjusted coefficient of determination (R2) was reported for each regression model, whereas the cross-validation analysis included the smallest detectable change (SDC) and bias. Close relationships were found between the traditional 30 s WAnT and both the WAnT15 (R2 = 0.98) and WAnT20 (R2 = 0.99). Cross-validation analysis showed a lower error and bias for WAnT20 (SDC = 9.3 W, bias = −0.1 W) compared to WAnT15 (SDC = 22.2 W, bias = 1.8 W). Lastly, sensitivity to identify individual changes was higher for WAnT20 (TRAIN = 11/11 subjects, CONTROL = 9/11 subjects) than for WAnT15 (TRAIN = 4/11 subjects, CONTROL = 2/11 subjects). These findings suggest that the WAnT20 could become a valid and sensitive protocol to replace the traditional 30 s WAnT.