Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.6018/edumed.637221


Título: | Comparison of Automatic Item Generation Methods in the Assessment of Clinical Reasoning Skills |
Otros títulos: | Comparación de métodos de generación automática de ítems en la evaluación de habilidades de razonamiento clínico |
Fecha de publicación: | 2025 |
Editorial: | Universidad de Murcia. Servicio de publicaciones |
Cita bibliográfica: | Revista Española de Educación Médica, Vol. 6 Núm. 1 (2025) |
ISSN: | 2660-8529 |
Materias relacionadas: | CDU::6 - Ciencias aplicadas::61 - Medicina |
Palabras clave: | Automated item generation Clinical reasoning Template-based method ChatGPT Multiple-choice questions |
Resumen: | The use of automatic item generation (AIG) methods offers potential for assessingclinical reasoning (CR) skills in medical education, a critical skill combining intuitive andanalytical thinking. In preclinical education, these skills are commonly evaluated through writtenexams and case-based multiple-choice questions (MCQs), which are widely used due to the highnumber of students, ease of standardization, and quick evaluation. This research generated CR-focused questions for medical exams using two primary AIG methods: template-based and non-template-based (using AI tools like ChatGPT for a flexible approach). A total of 18 questions wereproduced on ordering radiologic investigations for abdominal emergencies, alongside faculty-developed questions used in medical exams for comparison. Experienced radiologists evaluatedthe questions based on clarity, clinical relevance, and effectiveness in measuring CR skills. Resultsshowed that ChatGPT-generated questions measured CR skills with an 84.52% success rate,faculty-developed questions with 82.14%, and template-based questions with 78.57%, indicatingthat both AIG methods are effective in CR assessment, with ChatGPT performing slightly better.Both AIG methods received high ratings for clarity and clinical suitability, showing promise inproducing effective CR-assessing questions comparable to, and in some cases surpassing, faculty-developed questions. While template-based AIG is effective, it requires more time and effort,suggesting that both methods may offer time-saving potential in exam preparation for educators. |
Autor/es principal/es: | Emekli, Emre Karahan, Betül Nalan |
URI: | http://hdl.handle.net/10201/155792 |
DOI: | https://doi.org/10.6018/edumed.637221 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 12 |
Derechos: | info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
Aparece en las colecciones: | Vol. 6 Nº 1 (2025) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Automated+Item+Generation+Methods+final.pdf | English | 717,83 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons