Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.6018/edumed.637221

Título: Comparison of Automatic Item Generation Methods in the Assessment of Clinical Reasoning Skills
Otros títulos: Comparación de métodos de generación automática de ítems en la evaluación de habilidades de razonamiento clínico
Fecha de publicación: 2025
Editorial: Universidad de Murcia. Servicio de publicaciones
Cita bibliográfica: Revista Española de Educación Médica, Vol. 6 Núm. 1 (2025)
ISSN: 2660-8529
Materias relacionadas: CDU::6 - Ciencias aplicadas::61 - Medicina
Palabras clave: Automated item generation
Clinical reasoning
Template-based method
ChatGPT
Multiple-choice questions
Resumen: The use of automatic item generation (AIG) methods offers potential for assessingclinical reasoning (CR) skills in medical education, a critical skill combining intuitive andanalytical thinking. In preclinical education, these skills are commonly evaluated through writtenexams and case-based multiple-choice questions (MCQs), which are widely used due to the highnumber of students, ease of standardization, and quick evaluation. This research generated CR-focused questions for medical exams using two primary AIG methods: template-based and non-template-based (using AI tools like ChatGPT for a flexible approach). A total of 18 questions wereproduced on ordering radiologic investigations for abdominal emergencies, alongside faculty-developed questions used in medical exams for comparison. Experienced radiologists evaluatedthe questions based on clarity, clinical relevance, and effectiveness in measuring CR skills. Resultsshowed that ChatGPT-generated questions measured CR skills with an 84.52% success rate,faculty-developed questions with 82.14%, and template-based questions with 78.57%, indicatingthat both AIG methods are effective in CR assessment, with ChatGPT performing slightly better.Both AIG methods received high ratings for clarity and clinical suitability, showing promise inproducing effective CR-assessing questions comparable to, and in some cases surpassing, faculty-developed questions. While template-based AIG is effective, it requires more time and effort,suggesting that both methods may offer time-saving potential in exam preparation for educators.
Autor/es principal/es: Emekli, Emre
Karahan, Betül Nalan
URI: http://hdl.handle.net/10201/155792
DOI: https://doi.org/10.6018/edumed.637221
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 12
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Aparece en las colecciones:Vol. 6 Nº 1 (2025)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Automated+Item+Generation+Methods+final.pdfEnglish717,83 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons