Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10201/150921

Título: ACTA: Automatic Configuration of the Tensor Memory Accelerator for High-End GPUs
Fecha de publicación: mar-2025
Editorial: Association for Computing Machinery (ACM)
Resumen: Achieving peak GPU performance requires optimizing data locality and asynchronous execution to minimize memory access costs and overlap computation with transfers. While features like the Tensor Memory Accelerator (TMA) and warp specialization address these challenges, their complexity often limits programmers. In this work, we present ACTA (Automatic Configuration of the Tensor Memory Accelerator), a software library that simplifies and optimizes TMA usage. By leveraging the GPU Specification Table (GST), ACTA dynamically determines the optimal tile sizes and queue configurations for each kernel and architecture. Its algo- rithm ensures efficient overlap between memory and computation, drastically reducing programming complexity and eliminating the need for exhaustive design space exploration. Our evaluation across a diverse set of GPU kernels demonstrates that ACTA achieves performance within 2.78% of exhaustive tun-ing while requiring only a single configuration pass. This makes ACTA a practical and efficient solution for optimizing modern GPU workloads, combining near-optimal performance with significantly reduced programming effort.
Autor/es principal/es: Meseguer, Nicolás
Sun, Yifan
Pellauer, Michael
Abellán, José L
Acacio, Manuel E.
Forma parte de: 16th Int'l Workshop on General Purpose Processing Using GPU (GPGPU '25)
URI: http://hdl.handle.net/10201/150921
Tipo de documento: info:eu-repo/semantics/preprint
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
preprint_tma_gpgpu_2025.pdf669,13 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons