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Abstract
Achieving peak GPU performance requires optimizing data locality
and asynchronous execution to minimize memory access costs and
overlap computation with transfers. While features like the Tensor
Memory Accelerator (TMA) and warp specialization address these
challenges, their complexity often limits programmers.

In this work, we present ACTA (Automatic Configuration of
the Tensor Memory Accelerator), a software library that simplifies
and optimizes TMA usage. By leveraging the GPU Specification
Table (GST), ACTA dynamically determines the optimal tile sizes
and queue configurations for each kernel and architecture. Its algo-
rithm ensures efficient overlap between memory and computation,
drastically reducing programming complexity and eliminating the
need for exhaustive design space exploration.

Our evaluation across a diverse set of GPU kernels demonstrates
that ACTA achieves performance within 2.78% of exhaustive tun-
ing while requiring only a single configuration pass. This makes
ACTA a practical and efficient solution for optimizing modern GPU
workloads, combining near-optimal performance with significantly
reduced programming effort.
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1 Introduction and Motivation
GPUs are nowadays fundamental building blocks in contemporary
data centers, as they have been consolidated as the dominant com-
pute platform for accelerating a myriad of application domains,
including deep learning, high-performance computing, big data
analytics, among others [8]. Despite their massive computational
performance and memory throughput, GPUs often pose challenges
to programmers in harnessing their full potential. These difficulties
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are particularly evident in workloads that are highly sensitive to
memory latency, which significantly contribute to performance
disparities [6, 9, 14, 15]. These inefficiencies often stem from the in-
ability of programs to effectively overlap memory operations with
computation, resulting in idle and underutilized GPU resources [7].

As GPU architectures continue to evolve with the addition of
specialized hardware (e.g., Tensor Cores [16]) and new data formats
(e.g., TF32 or FP4), aimed at enhancing application performance for
specific current necessities [13], asynchronous memory transfers
are becoming a standard feature in high-end GPUs. In particular,
NVIDIA’s Hopper (H100) architecture [3] has recently introduced
the Tensor Memory Accelerator (TMA) unit, which improves data
transfer efficiency by overlapping memory operations between
global and shared memory with active computation. Additionally,
techniques like warp specialization enable different warps to handle
specific tasks within a kernel, facilitating better overlap between
memory accesses and computation [1, 4, 5, 10].

Unfortunately, asynchronous memory transfers come with a
significant challenge for programmers, who must not only imple-
ment the necessary data transformations but also carefully schedule
memory block accesses to ensure they are available in shared mem-
ory precisely when needed. Certainly, this constitutes an important
problem, as demonstrated by previous developments such as the
Cell BE processor [18]. In particular, Cell BE enabled asynchronous
DMA transfers between off-chip and on-chip memory in its Syner-
gistic Processing Elements (SPEs) to bring significant performance
boosts. Unfortunately, the significant challenges programmers faced
in fully utilizing its capabilities, particularly in managing asynchro-
nous memory transfers, led to the product’s cancellation just a few
years after its launch.

Similarly, while specialized mechanisms like TMA and warp spe-
cialization can significantly boost performance, they also add a layer
of complexity that makes GPU programming substantially more
challenging and harder to maintain. Consequently, successfully
leveraging the new TMA units and warp specialization features re-
quires advanced GPU skills and a thorough understanding of tools
such as NVIDIA’s SDK or libraries like CUTLASS, which provide
high-level programming support. While these tools offer example
implementations that assist in programming, adapting them to
real-world GPU application kernels is often complex and requires
extensive hardware knowledge.

To bridge the gap between programming productivity and appli-
cation performance on high-end TMA-supported GPU platforms,
we propose ACTA (Automatic Configuration of the Tensor Memory
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Accelerator). ACTA is a software library that heuristically deter-
mines efficient tile sizes and shared memory layouts on a per-
application basis, significantly reducing programmer effort while
effectively exploiting the TMA units to enhance performance in
memory-latency-sensitive GPU applications. To this end, ACTA
requires essential GPU specifications as its inputs, such as clock
frequency, compute throughput related capabilities (e.g., number
of SMs), cache hierarchy details (e.g., line size, total size, cache
latencies), the total available shared memory space, the peak mem-
ory bandwidth, among others. Additionally, ACTA accounts for
unique algorithmic characteristics of each GPU application ker-
nel, such as arithmetic intensity and vector type (streaming or
stationary) [2], to tailor the configuration for each kernel. Based
on this information, and by relying on the Little’s law, ACTA is
able to infer a configuration close to the optimal for the parameters
that ultimately determine the performance of a TMA-based GPU
application (details in Section 3).

As a result, ACTA tradeoffs complexity and performance, offer-
ing a practical and efficient pathway to fully utilize modern GPU
capabilities. Our key contributions are as follows:
• ACTA introduces a systematic approach to automate the config-

uration of advanced GPU mechanisms like the Tensor Memory
Accelerator (TMA) Queues.
• ACTA abstracts the intricate details of TMA configuration, en-
abling developers to achieve high-performance implementa-
tions with minimal effort.

2 Background
Memory latency and bandwidth are critical features in modern GPU
architectures, directly affecting performance and efficiency. The
disparity between high-speed computational units and relatively
slower memory systems creates bottlenecks, especially when han-
dling large-scale data-intensive applications. Shared memory plays
a key role in mitigating these issues by acting as a high-speed inter-
mediate storage. However, effective utilization of shared memory
depends heavily on memory access patterns. Inefficient memory
management, including uncoalesced access or excessive reliance
on global memory, can lead to severe performance degradation.

To improve resource utilization, warp specialization [1] assigns
different roles to individual warps within a threadblock. This ap-
proach diverges from the typical expectation that all threads in a
GPU execute the same instructions simultaneously. By enabling
one warp to focus on specific tasks, such as managing memory
transfers, while others handle computation, warp specialization
introduces heterogeneity among warps. However, this scheme re-
quires careful coordination to avoid inefficiencies, particularly in
synchronizing memory and computation.

Building on this concept, the Tensor Memory Accelerator (TMA),
a new specialized hardware unit introduced in NVIDIA H100 [3],
extends the capabilities of warp specialization to implement an
efficient producer-consumer scheme. A small number of threads
(producers) manage asynchronous global-to-shared memory trans-
fers, while most threads (consumers) focus on general-purpose
computations. To orchestrate the growing number of on-chip accel-
erators and diverse groups of threads, TMA introduces hardware-
accelerated mechanisms for synchronization, enabling consumer

threads to efficiently wait for data readiness without stalling the
entire execution pipeline.

TMA operations are launched through a copy descriptor, a com-
pact structure that specifies the global memory address, tensor
layout, and number of elements to copy. Once the operation is
initiated by a single thread within a warp, the TMA hardware au-
tonomously manages address generation, stride calculations, and
boundary conditions, significantly reducing programmer overhead.
Large blocks of data can be seamlessly transferred between global
memory (GMEM) and shared memory (SMEM), optimizing band-
width utilization and minimizing latency.

A key innovation in the TMA is its synchronizationmodel, which
introduces specialized asynchronous barriers to optimize coordina-
tion between producer and consumer threads. In particular, TMA
employs asynchronous transaction barriers, which split synchro-
nization into two phases: arrive and wait. Producer threads signal
their progress by executing an arrive command when shared data is
ready. This operation is non-blocking, allowing producers to move
on to independent work without stalling (i.e. loading a new block of
data). Consumer threads, on the other hand, issue a wait command
only when they need the data, blocking until all producers have
signaled their arrive. This two-step process enables early threads
to utilize idle cycles for other computations, overcoming, in this
way, the inefficiencies of busy-wait synchronization.

By leveraging these hardware-accelerated asynchronous barriers
and transaction-based synchronization, TMA has the potential of
overlapping memory transfers and computation. Unfortunately, the
programmer must be directly involved to harness its full poten-
tial. Mismanagement of dependencies–such as incorrect ordering
of memory operations–can lead to race conditions, deadlocks, or
incorrect results, complicating the debugging process. Addition-
ally, configuring TMA operations requires detailed knowledge of
the underlying data layout and workload, demanding precision in
defining parameters such as tensor dimensions and memory strides.

To reduce the programming complexity of the TMA, CUDA in-
troduces the cuda::pipeline API with single and multiple stages for
managing asynchronous memory operations. In our work, we im-
plement a custom solution called OperandQueues, inspired by [17],
providing a streamlined abstraction tailored to our approach.

Similar to how TMA operations are launched using a copy de-
scriptor, Operand Queues are initialized with a queue descriptor.
This descriptor defines key parameters for memory transfers, such
as starting addresses, vector sizes, tile dimensions, memory strides,
and shared memory destinations. Once initialized, Operand Queues
automatically manage the underlying TMA copy descriptors, fur-
ther abstracting the details of data movement.

In this scheme, the producer warp uses the queue to transfer
data and synchronizes with consumer warps through specialized
queue functions. Consumers retrieve and process data from the
queue, synchronizing their operations seamlessly with memory
loads. After consuming a tile, consumers signal the queue, enabling
the producer to load the next tile automatically. While synchro-
nization remains necessary, Operand Queues greatly simplify the
process by providing intuitive, high-level functions that abstract
low-level coordination tasks. The problem that still remains, how-
ever, is the definition of the configurations of the queues, which
ultimately depend on both the characteristics of the own GPU (e.g.
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Figure 1: GPU Overview. The GST, the new hardware struc-
ture required by ACTA, is highlighted in red.

size of the shared memory, compute bound, memory bandwidth,...)
and the particularities of the application (e.g. arithmetic intensity).

3 ACTA
In this section, we introduce ACTA (Automatic Configuration of
the Tensor Memory Accelerator), a software library designed to
infer and provide optimal tile sizes and queue slots configurations
for Tensor Memory Accelerator (TMA) kernels in high-end GPUs.

Rather than fully automating the configuration process, ACTA
offers developers the critical parameters needed to efficiently initial-
ize and use TMA Operand Queues, streamlining the kernel setup
process and enhancing performance.

ACTA relies on several important architectural parameters to
determine optimal configurations for kernel queues and memory
operations. We assume that the values of these parameters for a
particular GPU setup are accessible through a vendor-provided
hardware structure which we call the GPU Specification Table
(GST)1. Figure 1 shows the organization of the GPU model assumed
in this work with the GST added. The fact that ACTA relies on the
configuration parameters of the target GPU, ensures applicability
across a wide range of GPU architectures, making ACTA a robust
and adaptable solution.

3.1 ACTA Functionality and Workflow
Understanding the functionality of ACTA requires considering
both the host-side implementation and its interaction with the GPU
hardware. Listing 1 illustrates a typical example of host-side code
employing ACTA 2.

On the host side, ACTA extends the GPU SDK by providing an
API for dynamically configuring kernel queues. After the typical
setup phase—copying data to the device and initializing command
queues (lines 2-4)—the InitACTA function is called to prepare the
library for kernel execution. InitACTA takes several parameters such
as the kernel’s arithmetic intensity (e.g., MEDIUM), the number

1In case these data are not available, ACTA could use microbenchmarking to infer
these parameters dynamically.
2Hereafter, while ACTA is agnostic regarding GPU vendors, we adopt AMD terminol-
ogy for clarity and to align with our AMD-based experimental setup.

� �
1 driver.MemCopyH2D(b.device_A , b.MatrixA)
2 driver.MemCopyH2D(b.device_B , b.MatrixB)
3 driver.CreateCommandQueue ()
4
5 // Init ACTA for configuring the Queues
6 driver.InitACTA(MEDIUM , 8, 64)
7
8 // Register the Queues
9 driver.RegisterQueue(K, 4, TYPE_STREAMING)
10 driver.RegisterQueue(K, 4, TYPE_STATIONARY)
11
12 // Obtain the Queues sized in FIFO order
13 a_queue = driver.SizeQueue ()
14 b_queue = driver.SizeQueue ()
15
16 // Load kernel arguments using the QuCo
17 kernArg := KernelArgs{
18 b.device_A , b.device_B , b.device_Z , M, K, N,
19 K0, a_queue.TileSize , b_queue.TileSize , K2, M0, M1,

M2,
20 a_queue.QueueTiles , b_queue.QueueTiles , ConsumerWfs
21 }
22
23 driver.EnqueueLaunchKernel(binary , kernArg)� �

Listing 1: High-Level Host Code Example for aMatrix-Matrix
multiplication. ACTA functions are highlighted in blue.

of consumer wavefronts (e.g., 8), and the GPU’s compute units to
guide optimization and scheduler occupancy.

During the initialization phase, ACTA interacts with the GPU
hardware to query the GPU Specification Table (GST), which is
accessible through the Command Processor as shown in Figure 1.
The GST contains critical architectural details such as available
LDS Scratchpad (or Shared Memory in NVIDIA terminology) for
the queues, computational capacity, memory bandwidth and la-
tencies, among other (Figure 1 lists the parameters considered by
ACTA). Using this information, ACTA validates these parameters
against the kernel’s requirements and registers kernel queues via
the RegisterQueue function (lines 10 and 11). This process includes
specifying the queue type (e.g., streaming or stationary), the length
of the vector (e.g., K dimension in a matrix), and the data type size
(e.g., a 4-byte float).

Then, the driver dynamically sizes the queues in FIFO order
(through the SizeQueue function in lines 14 and 15), leveraging
the information stored in the GST to determine optimal configu-
rations, including tile sizes and the number of slots allocated to
each queue. The values extracted from the GST guide the kernel
optimization process, ensuring that the kernel leverages the GPU’s
architectural features effectively. This tight integration between
ACTA and the GST allows for efficient and adaptive configuration
of GPU resources tailored to specific workloads.

Finally, the host prepares the kernel arguments (lines 18-22)
using the optimized configurations provided by ACTA. The Ker-
nelArgs structure incorporates parameters such as the tile sizes and
queue configurations, directly obtained from ACTA’s sizing opera-
tions. The kernel is then launched using the EnqueueLaunchKernel
function.

3.2 The ACTA Algorithm
The ACTA algorithm is the core mechanism responsible for infer-
ring and selecting the optimal tile size and queue slots (tiles) using
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Algorithm 1: Optimal Tile Size Calculation
Input: Range of tile sizes: [min, max], Math Wavefronts, Ar.I., GST
Output: Optimal tile size
Function optimal_tile_size()

for tile ∈ [min, max] do
𝑚𝑒𝑟𝑖𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ← evaluate(processing vs memory efficiency for
tile);

𝑐𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ← estimate(memory usage for tile);
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑀𝑒𝑟𝑖𝑡 ← combine(meritFactor, costFunction to compute
final score);

if tile is better than the best then
update 𝑏𝑒𝑠𝑡 ;

end
end
𝑏𝑒𝑠𝑡 ← adjust(based on scaling factor and arithmetic intensity);

end

Algorithm 2: Function for calculating the Merit Factor
Input: Tile Size, GST
Output:Merit Factor
Function evaluate()

// Step 1: Compute the best-case scheduling time for

processing the tile

𝑏𝑒𝑠𝑡𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔← TileSize
SIMDMulsPerCycle×min(ConsumerWfs,4)

// Step 2: Calculate processing time, including scheduling

roundtrip overhead

𝑝𝑟𝑜𝑐𝑇𝑖𝑚𝑒 ← 𝑏𝑒𝑠𝑡𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 +
(
𝑏𝑒𝑠𝑡𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 − 1

)
×

min(ConsumerWfs − 1,WfPools)
// Step 3: Compute memory transfer latency and times
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑇𝑜𝑡𝑎𝑙 ← TMACycles + DRAMLatency + L2Latency
𝑚𝑒𝑚𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑇𝑖𝑚𝑒 ← TileSize×ElementSize

Bandwidth
𝑐𝑎𝑐ℎ𝑒𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑇𝑖𝑚𝑒 ← 2 × TileSize×ElementSize

CacheLineSize
// Step 4: Aggregate memory transfer time
𝑚𝑒𝑚𝑇𝑖𝑚𝑒 ←
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑇𝑜𝑡𝑎𝑙 +𝑚𝑒𝑚𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑇𝑖𝑚𝑒 + 𝑐𝑎𝑐ℎ𝑒𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑇𝑖𝑚𝑒

// Step 5: Return the merit factor as the ratio of

processing time to memory time

return procTime
memTime

end

the TMA OperandQueues previously described in Section 2. This
process begins by registering all queues using the RegisterQueue
function. Registering all queues beforehand is a critical step, as it
provides the algorithm with a complete understanding of the queue
landscape, including the number of queues, their sizes, and their
intended use.

Once all queues are registered, the SizeQueue function is called
to compute the optimal configuration for a specific queue. If the
configuration for the requested queue and kernel has already been
computed, the algorithm simply returns the precomputed values.
These include the tile size, the number of slots, the element byte size,
and the total number of tiles for the vector. This caching mechanism
eliminates redundant computations, streamlining performance. If
the configuration has not been computed yet, the algorithm pro-
ceeds to determine the optimal values using a systematic approach.

The first step in the ACTA algorithm is to determine the op-
timal tile size (Algorithm 1). This function iteratively evaluates
tile sizes over a predefined range, starting from a min, e.g. 64 el-
ements—a fixed value representing the minimum cache line size
that can be requested from memory—and extending up to a max,
e.g. 8192 elements-a limit determined through our design space

exploration. For each candidate tile size, it calculates a merit factor
trough an evaluate() function, which represents the ratio of pro-
cessing time to memory transfer time for a tile. Processing time
accounts for compute cycles based on the kernel’s arithmetic oper-
ations and wavefront utilization. Memory time incorporates key ar-
chitectural parameters such as DRAM latency, cache transfer times,
and bandwidth. Notably, these computations rely on GPU-specific
information retrieved from the GST, ensuring that the algorithm
is tailored to the hardware’s characteristics (see Algorithm 2 for
further explanation about the evaluate() function).

In addition to the merit factor, the algorithm computes a cost
function to evaluate resource usage for transferring a tile, consider-
ing latency, bandwidth, and cache-line constraints. Together, the
merit factor and cost function are combined into a weighted merit
score, which determines the suitability of a given tile size. This
ensures that the selected tile provides the optimal balance between
computational efficiency and memory efficiency.

After iterating over possible tile sizes, the algorithm adjusts
for the kernel’s arithmetic intensity (Ar.I.): scaling up the tile size
for low Ar.I. kernels (i.e., Elementwise or Dot-Product) to improve
memory throughput and scaling down for high Ar.I. kernels (i.e.,
Matrix-Matrix) to balance memory and computation overlap. This
ensures the tile size aligns with the kernel’s characteristics.

The next step in the ACTA algorithm is to determine the op-
timal number of slots for each queue, a process handled by the
calculateOptimalNumSlots function (Algorithm 3). This step begins
by counting the number of streaming and stationary queues, as
the allocation strategy prioritizes streaming queues to maximize
performance, while reserving remaining resources for stationary
queues.

For streaming queues, the optimal number of slots is determined
using the Little’s Law, which provides a relationship between the
rate at which items enter a system, the time they spend being
processed, and the average number of items. The observation done
by Little helps ensure that resources are neither underutilized nor
overwhelmed, maintaining an efficient flow, and has been widely
applied within the fields of operations management and computer
architecture [11]. In the context of ACTA, Little’s law is adapted
to calculate the ideal number of slots required for a streaming
queue, considering the rate at which tiles are loaded into the shared
memory by TMA operations and the total time needed to compute
and process a tile.

After calculating the number of slots, the value is rounded up
or down to the nearest power of two, and adjusted based on the
number of compute units. Subsequently, the last step ensures that
the calculated number of slots fits the available shared memory. If
the slots do not fit, the number of slots is scaled based on the Ar.I.
of the workload. For low Ar.I. workloads, more slots are allocated
to improve memory throughput. For high Ar.I. workloads, fewer
slots are chosen to reduce memory pressure and better overlap
computation and memory accesses. Once validated, the slots are
allocated for the streaming queues.

After finalizing the streaming queues, the former steps are re-
peated for the stationary queues, after the remaining shared mem-
ory is equitably divided among them.
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Algorithm 3: Optimal Number of Slots Calculation
Input: Streaming and stationary queues, Ar.I., Compute Units
Output: Optimal number of slots for each Queue
Function optimal_num_slots()

count streaming and stationary queues;
if there are streaming queues then

𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠 ← useLittlesLaw();
𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠 ← roundToPowerOfTwo(𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠);
𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠 ← roundBasedOnCUs(𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠);
if sufficient space in Shared Memory then

allocateSpace(streaming queues);
end
else

𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠 ← useArithmeticIntensity();
reduce 𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠 if necessary to fit the data;
allocateSpace(streaming queues);

end
end
if there are stationary queues then

calculate available space for each stationary queue;
determine how many slots can fit into the remaining space;
𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠 ← roundToPowerOfTwo(𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠);
𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠 ← roundBasedOnCUs(𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠);
reduce 𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠 if necessary to fit the data;
allocateSpace(stationary queues);

end
end

On subsequent calls to SizeQueue, the precomputed tile sizes
and slot configurations are reused, eliminating the need for recal-
culations and enhancing efficiency during kernel execution. The
InitACTA function can be invoked multiple times before each ker-
nel execution, providing the flexibility to schedule a series of ker-
nels with tailored configurations (enhancing thus performance
and resource utilization). Each call to InitACTA resets cached val-
ues, requiring ACTA to recalculate optimal queue configurations.
However, this process also involves invoking the four key func-
tions—registering queues, determining tile sizes, allocating slots,
and adapting to kernel-specific requirements—to fully configure
the queues for the new workload.

4 Evaluation Methodology
4.1 Simulation Environment
To quantify the performance benefits of ACTA,we useMGPUSim [19],
a microarchitectural cycle-level simulator that accurately models
the AMD R9 Nano GPU (Table 2) with a GCN3 Instruction Set
Architecture (ISA). Since AMD GPUs do not currently incorporate
TMA units, we extended MGPUSim with a TMA model inspired by
the functionality of the NVIDIA Hopper’s TMA. This way, we refer
to our simulated scenarios as TMA“-Like”. Note that, although our
simulations are based on the AMD R9 Nano, ACTA is architecture-
agnostic and can benefit GPUs, from any vendor, that implement a
TMA-enabled platform.

4.2 Linear Algebra kernels
We evaluatedACTAusing a set of popular GPU kernels representing
a wide range of computational workloads (see Table 1), which are
fundamental to many modern application domains such as machine
learning, data science and analytics, genomics, signal processing,
among others.

We developed several versions of each kernel (see Figure 2), some
of which use TMA to reduce memory latency by opportunistically
overlapping memory transfers with computation. Our observations
show that these TMA-enabled versions achieve significant speedups
compared to their non-TMA counterparts.

4.3 Design Space
To evaluate the effectiveness of ACTA, we conducted a detailed
analysis of the design space for TMA-based kernels. The design
space encompasses all possible combinations of tile sizes and queue
slots across multiple queues, as summarized in Table 1.

The number of possible configurations grows exponentially with
the number of queues and options for tile sizes and queue slots.
For the purposes of this study, we constrained the design space to
specific options: tile sizes ranging from 64 to 8192 elements and
queue slot sizes ranging from 1 to 83. The general rule for calculating
the total number of combinations is given by (𝑇 × 𝑆)𝑄 , where 𝑇
is the number of tile size options, 𝑆 is the number of queue slot
options, and𝑄 is the number of queues. This formula illustrates the
rapid growth of the design space as𝑄 increases (see #𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠

in Table 1).
ACTA tackles this challenge by automating the extensive design

exploration process through a few host-side API calls (Section 3),
reducing complexity to a single kernel launch while achieving near-
optimal configurations.

5 Experimental Results
The results of our evaluation are presented in Figure 2, a clus-
tered bar chart comparing the performance of six execution cases:
i) 𝑁𝑜𝑇𝑀𝐴 𝑁𝑜𝑡 − 𝑇𝑢𝑛𝑒𝑑 ; ii) 𝑁𝑜𝑇𝑀𝐴 𝐹𝑖𝑛𝑒 − 𝑇𝑢𝑛𝑒𝑑 ; iii) 𝑇𝑀𝐴 −
𝐿𝑖𝑘𝑒 𝑁𝑜𝑡 −𝑇𝑢𝑛𝑒𝑑 ; iv) 𝑇𝑀𝐴 − 𝐿𝑖𝑘𝑒 𝐼𝑛𝑓 𝑜𝑟𝑚𝑒𝑑 −𝑇𝑢𝑛𝑒𝑑 ; v) 𝑇𝑀𝐴 −
𝐿𝑖𝑘𝑒 𝐹𝑖𝑛𝑒 −𝑇𝑢𝑛𝑒𝑑 ; and vi)𝐴𝐶𝑇𝐴, across all benchmarks. Each case
represents a different level of optimization and complexity in kernel
execution. All TMA-based implementations utilize OperandQueues
to manage memory transfers and computations.

The y-axis of the chart represents normalized performance, rela-
tive to an ideal TMA implementation (depicted by the horizontal red
line as speed of light) representing the upper performance bound.
In this ideal scenario, the TMA operates with an unbounded shared
memory, allowing all data to fit into the shared memory and en-
abling continuous tile loading without memory constraints.

The first two cases, 𝑁𝑜𝑇𝑀𝐴 𝑁𝑜𝑡 −𝑇𝑢𝑛𝑒𝑑 and 𝑁𝑜𝑇𝑀𝐴 𝐹𝑖𝑛𝑒 −
𝑇𝑢𝑛𝑒𝑑 , evaluate kernels that do not take advantage of TMA.
𝑁𝑜𝑇𝑀𝐴 𝑁𝑜𝑡 − 𝑇𝑢𝑛𝑒𝑑 represents an untuned implementation,
where memory operations and computations are poorly optimized.
As shown in Figure 2, this approach results in low performance, as
the lack of a TMA exacerbates the inefficiency of memory transfers.
𝑁𝑜𝑇𝑀𝐴 𝐹𝑖𝑛𝑒 −𝑇𝑢𝑛𝑒𝑑 , on the other hand, applies an extensive de-
sign space exploration to optimize kernel parameters, significantly
improving performance across all benchmarks. This highlights
that even without leveraging the TMA, careful tuning can achieve
competitive results for simple workloads like ElementwiseK, Ele-
mentwise, and Dot-Product. However, for more complex kernels like

3For kernels like Elementwise or Dot-Product, the tile size ranges from 512 to 8192, thus
5 possibilities.
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Table 1: Kernels and design-space saved by using ACTA

Kernel Description Dimensions # Queues # Tiles # Slots # Combinations

ElementwiseK Operations optimized for high throughput 16777216 1 5 5 25
Elementwise General element-wise operations 16777216 2 5 5 625Sumvectors Addition of vectors, a basic building block in many applications
Dot-Product Critical workload for various linear algebra workloads 2097152
Matrix-Vector A staple in scientific computing and data processing [2048, 2048] × 2048 8+1 8 5 2.6e+14Matrix-Matrix Fundamental for dense linear algebra and machine learning tasks [512, 2048] × [2048, 128]
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Figure 2: Kernel execution normalized to speed of light

Table 2: Specifications of the R9 Nano GPU

Parameter Property Amount

Frequency 1.0 GHz -
CUs - 64

SIMDs 64 Muls/cycle 64
L1 Vector Cache 16KB 4-way 64
L1 Inst Cache 32KB 4-way 16
L1 Scalar Cache 16KB 4-way 16

L2 Cache 256KB 16-way 16
DRAM 512MB 16

Matrix-Vector and Matrix-Matrix, the absence of a TMA becomes a
limiting factor, and performance remains far below the ideal.

Moving to TMA-based implementations, 𝑇𝑀𝐴 − 𝐿𝑖𝑘𝑒 𝑁𝑜𝑡 −
𝑇𝑢𝑛𝑒𝑑 represents a baseline case where the TMA is used but with-
out proper configuration of tile sizes and queue slots. This approach
results in poor performance across all kernels. The lack of informed
configurations leads to suboptimal overlap between memory oper-
ations and computations, leaving resources underutilized and cre-
ating substantial performance gaps compared to the upper bound.

𝑇𝑀𝐴 − 𝐿𝑖𝑘𝑒 𝐼𝑛𝑓 𝑜𝑟𝑚𝑒𝑑 − 𝑇𝑢𝑛𝑒𝑑 incorporates heuristic-based
configurations inspired by NVIDIA guidelines, using tile sizes be-
tween 64 and 256 elements and queue slots between 2 and 4 (double
or quadruple buffering) [12]. This approach delivers strong perfor-
mance for simpler kernels like ElementwiseK, Elementwise, Sumvec-
tors, and Dot-Product, but its performance for Matrix-Vector and
Matrix-Matrix remains suboptimal due to the increased complexity
and resource demands of these workloads.

The𝑇𝑀𝐴−𝐿𝑖𝑘𝑒 𝐹𝑖𝑛𝑒−𝑇𝑢𝑛𝑒𝑑 involves an exhaustive exploration
of the design space to identify the best configurations for each ker-
nel. This approach requires substantial computational effort (with

the GPU kernel executed once per configuration) and manual tun-
ing, but achieves significantly better performance, particularly for
Matrix-Vector and Matrix-Matrix workloads. The optimized config-
urations allow these kernels to make better use of GPU resources,
achieving performance much closer to the ideal. However, the com-
plexity of this approach makes it impractical for most real-world
scenarios (e.g., as shown in Table 1, 2.6e+14 kernel launches for
Matrix-Vector or Matrix-Matrix workloads).

Finally, ACTA calculates near-optimal tile sizes and queue con-
figurations, launching the ACTA-configured kernel only once and
eliminating the need for exhaustive tuning. As shown in Figure 2,
ACTA achieves performance that is slightly below𝑇𝑀𝐴−𝐿𝑖𝑘𝑒 𝐹𝑖𝑛𝑒−
𝑇𝑢𝑛𝑒𝑑 but consistently outperforms 𝑁𝑜𝑇𝑀𝐴 𝐹𝑖𝑛𝑒−𝑇𝑢𝑛𝑒𝑑 ,𝑇𝑀𝐴−
𝐿𝑖𝑘𝑒 𝑁𝑜𝑡 −𝑇𝑢𝑛𝑒𝑑 , and 𝑇𝑀𝐴 − 𝐿𝑖𝑘𝑒 𝐼𝑛𝑓 𝑜𝑟𝑚𝑒𝑑 −𝑇𝑢𝑛𝑒𝑑 across all
benchmarks. This demonstrates that ACTA provides near-optimal
configurations with significantly reduced complexity, making it a
practical and efficient solution for TMA-based kernels.

For the Matrix-Matrix kernel, all implementations, including
𝑇𝑀𝐴−𝐿𝑖𝑘𝑒 ; 𝐹𝑖𝑛𝑒 −𝑇𝑢𝑛𝑒𝑑 and𝐴𝐶𝑇𝐴, fall significantly short of the
ideal performance due to minimal data reuse in shared memory,
resulting in bottlenecks that limit their ability to approach the
performance of an idealized unlimited shared memory scenario.

Despite these challenges, as shown in the category 𝐺𝑒𝑜𝑚𝑒𝑎𝑛,
ACTA performs within 2.78% of 𝑇𝑀𝐴 − 𝐿𝑖𝑘𝑒 𝐹𝑖𝑛𝑒 − 𝑇𝑢𝑛𝑒𝑑 case
across all kernels, highlighting its ability to achieve near-optimal
performance without the need for extensive tuning. For four kernels
(ElementwiseK, Elementwise, Sumvectors, and Dot-Product), ACTA
delivers performance that is within 1% of the best achievable perfor-
mance, demonstrating its effectiveness for simpler workloads. For
more complex kernels like Matrix-Vector and Matrix-Matrix, ACTA
achieves more 90% of the ideal performance in Matrix-Vector and
over 35% in Matrix-Matrix, delivering highly competitive results
despite complexity.
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6 Conclusion
Using ACTA, developers can fully leverage cutting-edge GPU hard-
ware features like the Tensor Memory Accelerator (TMA) without
the burden of manually determining optimal kernel configurations.
By dynamically selecting the best tile sizes and queue configura-
tions based on the kernel and GPU architecture, ACTA abstracts
the complexity of hardware-specific tuning while ensuring efficient
and high-performance execution.

Through our evaluation, we showcased ACTA’s ability to deliver
near-optimal performance while drastically reducing tuning effort.
Beyond its technical contributions, ACTA simplifies the developer’s
workflow, offering a portable and scalable solution that is indepen-
dent of specific compiler implementations or GPU architectures.
These features make ACTA a practical framework for harnessing
the full potential of modern GPUs without the need for extensive
design space exploration.

By adapting its tuning process to specific GPU architectures,
ACTA ensures compatibility across diverse setups. As future work,
we plan to evaluate ACTA across multiple GPU architectures to
validate its portability.
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