Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.dcan.2021.09.001

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorGallego Madrid, Jorge-
dc.contributor.authorSánchez Iborra, Ramón J.-
dc.contributor.authorRuiz Martínez, Pedro Miguel-
dc.contributor.authorSkarmeta Gómez, Antonio F.-
dc.date.accessioned2025-02-01T09:30:02Z-
dc.date.available2025-02-01T09:30:02Z-
dc.date.issued2022-04-
dc.identifier.citationDigital Communications and Networks 8 (2022) 105–123es
dc.identifier.issn2352-8648-
dc.identifier.urihttp://hdl.handle.net/10201/149898-
dc.description© 2022 The authors. This document is the published version of a published work that appeared in final form in Digital Communications and Networks. This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0 . To access the final edited and published work see: https://doi.org/10.1016/j.dcan.2021.09.001-
dc.description.abstractThe exponential growth of mobile applications and services during the last years has challenged the existing network infrastructures. Consequently, the arrival of multiple management solutions to cope with this explosion along the end-to-end network chain has increased the complexity in the coordinated orchestration of different segments composing the whole infrastructure. The Zero-touch Network and Service Management (ZSM) concept has recently emerged to automatically orchestrate and manage network resources while assuring the Quality of Experience (QoE) demanded by users. Machine Learning (ML) is one of the key enabling technologies that many ZSM frameworks are adopting to bring intelligent decision making to the network management system. This paper presents a comprehensive survey of the state-of-the-art application of ML-based techniques to improve ZSM performance. To this end, the main related standardization activities and the aligned international projects and research efforts are deeply examined. From this dissection, the skyrocketing growth of the ZSM paradigm can be observed. Concretely, different standardization bodies have already designed reference architectures to set the foundations of novel automatic network management functions and resource orchestration. Aligned with these advances, diverse ML techniques are being currently exploited to build further ZSM developments in different aspects, including multi-tenancy management, traf c monitoring, and architecture coordination, among others. However, different challenges, such as the complexity, scalability, and security of ML mechanisms, are also identi ed, and future research guidelines are provided to accomplish a rm development of the ZSM ecosystem.es
dc.formatapplication/pdfes
dc.format.extent19es
dc.languageenges
dc.publisherElsevier KeAi Communicationses
dc.relationThis work has been supported by Fundacion Seneca-Agencia de Ciencia y Tecnología de la Region de Murcia-under the FPI Grant 21429/ FPI/20, and co-funded by Odin Solutions S.L., Region de Murcia (Spain); by the Spanish Ministry of Science, Innovation and Universities, under the projects ONOFRE 3 (Grant No. PID2020-112675RB-C44) and 5GHuerta (Grant No. EQC2019-006364-P) both with ERDF funds; and by the European Commission, under the INSPIRE-5Gplus (Grant No. 871808) project.Este trabajo ha sido respaldado por varios proyectos de investigación y fuentes de financiación, destacando entre ellos la Unión Europea a través del proyecto INSPIRE-5Gplus (Grant No. 871808), el Ministerio de Ciencia, Innovación y Universidades a través del proyecto ONOFRE 3 (PID2020-112675RB-C44), Fundacion Seneca-Agencia de Ciencia y Tecnología de la Region de Murcia mediente la beca FPI 21429/FPI/20 y ODIN Solutions S.L.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectZero-touch network and service management (ZSM)es
dc.subjectNext generation networks (NGN)es
dc.subjectArtificial intelligence (AI)es
dc.subjectMachine learning (ML)es
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes
dc.titleMachine learning-based zero-touch network and service management: a surveyes
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2352864821000614?via%3Dihubes
dc.identifier.doihttps://doi.org/10.1016/j.dcan.2021.09.001-
dc.contributor.departmentDepartamento de Ingeniería de la Información y las Comunicaciones-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
DCN-Zero-Touch.pdfArtículo3,05 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons