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A B S T R A C T

The exponential growth of mobile applications and services during the last years has challenged the existing
network infrastructures. Consequently, the arrival of multiple management solutions to cope with this explosion
along the end-to-end network chain has increased the complexity in the coordinated orchestration of different
segments composing the whole infrastructure. The Zero-touch Network and Service Management (ZSM) concept
has recently emerged to automatically orchestrate and manage network resources while assuring the Quality of
Experience (QoE) demanded by users. Machine Learning (ML) is one of the key enabling technologies that many
ZSM frameworks are adopting to bring intelligent decision making to the network management system. This
paper presents a comprehensive survey of the state-of-the-art application of ML-based techniques to improve ZSM
performance. To this end, the main related standardization activities and the aligned international projects and
research efforts are deeply examined. From this dissection, the skyrocketing growth of the ZSM paradigm can be
observed. Concretely, different standardization bodies have already designed reference architectures to set the
foundations of novel automatic network management functions and resource orchestration. Aligned with these
advances, diverse ML techniques are being currently exploited to build further ZSM developments in different
aspects, including multi-tenancy management, traffic monitoring, and architecture coordination, among others.
However, different challenges, such as the complexity, scalability, and security of ML mechanisms, are also
identified, and future research guidelines are provided to accomplish a firm development of the ZSM ecosystem.
1. Introduction

Next-Generation Networks (NGNs) are expected to cope with a wide
and flexible range of services, technologies, verticals, and devices. This
heterogeneity leads to a clear increase in the complexity of the activities
related to network infrastructure management [1]. The paradigms of
Software-Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV) have emerged as convenient solutions to adaptively handle
the dynamic demand of network resources. Nevertheless, the network
softwarization clearly calls for innovative solutions to tackle the issues
related to the automatic and efficient management of resources and the
adequate provision of end-to-end Quality of Experience (QoE) to
end-users. Both aspects are of prominent importance because the vir-
tualized resources are mapped to physical entities that may belong to
diverse providers.

To enable an automatically orchestrated management of network
resources across different domains and to warrant the end-user's QoE, a
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broad spectrum of both Zero-touch Network and Service Management
(ZSM) and Network Slicing (NS) techniques is currently being developed
[2–4]. While the latter permits the creation of a chain of network func-
tions that logically conform to a dedicated virtual network that fulfills
certain user requirements, vertical industry, or service, the former pro-
vides methods to achieve these goals in an unsupervised manner. Thus,
over a common physical infrastructure, multiple logical networks can
operate independently, abandoning the traditional approach of static,
fixed, and human-managed physical networks. Network slices must
operate elastically by efficiently handling the transported traffic flows
together with the service-level requirements of clients. Therefore,
communication among different service or infrastructure providers is
crucial. Having a zero-touch slice orchestrator with a holistic view of the
end-to-end path is also of paramount importance for the efficient man-
agement of resources. Consequently, this orchestrator should handle in-
formation regarding the network resource status in different involved
domains (i.e., Radio Access Network (RAN), Multi-access Edge
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Computing (MEC) segment, transport network, and core architecture) to
intelligently adapt the operation to the variations in the requirements of
different services over time. Fig. 1 depicts a general end-to-end slicing
architecture.

Network management decisions must be made by considering
different (sometimes contradicting) objectives because each type of ser-
vice presents diverse requirements (e.g., maximising data rate, mini-
mising energy consumption, or reducing end-to-end latency). In addition,
the inherent heterogeneity of NGNs makes it difficult to cope with the
fluctuations of virtualized topologies or unstable conditions of wireless
channels. Thus, the integration of intelligent functions within the
network architecture is a must. Such integration is useful for (i) flexibly
reacting to changes in network conditions, (ii) monitoring the traffic
status, (iii) controlling the network resources, and most importantly, (iv)
forecasting the system behavior as a whole and taking actions in advance.
This is particularly important in guaranteeing scalability and providing
the required QoE to end-users.

To this end, Machine Learning (ML) has recently emerged as a highly
promising alternative to cope with the aforementioned challenges in
terms of processing information, generating meaningful knowledge, and
providing intelligent decision-making capabilities to NGN management
systems following a ZSM-based approach [5–7]. ML is a field of study that
enables computers to learn without being explicitly programmed. For
this to be done, ML-based techniques receive a dataset that is processed
by one or multiple learning algorithms to build useful models. ML al-
gorithms are usually categorized into four different families [8]: Super-
vised Learning (SL), Unsupervised Learning (UL), Semi-Supervised
Learning (SSL), and Reinforcement Learning (RL).

The application of different ML techniques enriches the network
infrastructure with Intelligent and Autonomous Network Functions
(IANFs) in its different domains (Fig. 1). The type of technique to use
depends on the nature of the information gathered and the aimed ob-
jectives. However, regardless of the particular techniques employed, this
strategy drastically changes how current network management systems
operate. Using ML provides the architecture with flexibility and auto-
matic management capabilities that have never been seen before. How-
ever, several challenges must still be overcome, considering that ML-
powered techniques for enabling ZSM frameworks are still in their in-
fancy [9].

To the best of our knowledge, no prior extensive and up-to-date
surveys have specifically covered the topic of ML-fueled ZSM. Some
works have explored the application of ML in network slicing [10], SDN
and NFV [11], resource management [12], and wireless and mobile
networks [13–15]. In Ref. [10], the authors reviewed the application of
ML to manage the network slice operation in the Fifth-Generation (5G)
Fig. 1. Overall Zero-touch Network and
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mobile network. Meanwhile, [11] examined how ML can be used to
address the challenges that SDN and NFV present, specifically remarking
the issues caused by having limited access to available network re-
sources. Ref. [12] analyzed Deep Reinforcement Learning (DRL)-based
resource management schemes for 5G heterogeneous networks, which is
a complex problem caused by the interference between small and macro
cells. Ref. [13] provided a comprehensive survey on the application of
ML techniques to the Internet of Things (IoT) wireless communications.
Using a bottom-up approach, the authors examined the existing work at
the physical, data-link, and network layers. Ref. [14] addressed the
deployment of Deep Learning (DL) techniques in mobile and wireless
networking, covering diverse tasks, such as mobile data analysis, user
localization, network control, network security, and wireless signal
processing. In a similar manner [15], reviewed multiple DRL proposals
applied to well-known communications and networking issues, such as
data rate control, data offloading, network security, and dynamic
network access. Nevertheless, these studies offered a partial view of the
problem because they addressed only certain network segments or were
limited to specific AI models. Therefore, they did not address all the
needed operations to achieve a totally automated and self-managed
network infrastructure following the ZSM paradigm.

Given the relevance and the novelty of ZSM, this paper discusses the
necessity of integrating intelligence within NGN infrastructures to
effectively handle the heterogeneity of devices, services, and technolo-
gies that will coexist in future hyper-connected ecosystems. We provide
an overview of the ML techniques suitable for adoption in network
management, as well as current NS and ZSM standards, architectures,
and models. We also aim to recapitulate the different proposals from the
research community to manage and orchestrate NGN functions by using
ML. Thus, we identify the different network control functions required in
ZSM-managed architectures and provide insights regarding the most
proper ML techniques for implementing them. With this dissection, we
analyze specific ZSM frameworks developed under the umbrella of in-
ternational projects and standardization and research efforts. We also
highlight the different areas that need further study to reach an adequate
level of maturity.

The remainder of this paper is organized as follows. Section 2 pro-
vides an overview of the ML techniques used in network management;
Section 3 describes the standardization activities and architectures pro-
posed in different research projects; Section 4 presents in detail several
approaches of NGN infrastructure management and orchestration using
ML; Section 5 discusses the research challenges in this field and the future
lines of work; Section 6 concludes the survey. Table 1 lists all the acro-
nyms used in this paper.
Service Management (ZSM) vision.



Table 1
Definition of acronyms in alphabetical order.

Acronym Meaning

3GPP 3rd-Generation Partnership Project
5G 5th-Generation mobile network
AI Artificial Intelligence
BS Base Station
CNN Convolutional Neural Network
DE Decision-making Element
DL Deep Learning
DLT Distributed Ledger Technologies
DNN Deep Neural Network
DRL Deep Reinforcement Learning
DT Decision Tree
E2E End to End
ECMP Equal-Cost Multi-Path
EM Expectation-Maximization
ETSI European Telecommunications Standards Institute
eNB evolved NodeB
FNN Feedforward Neural Network
GAN Generative Adversarial Network
GANA Generic Autonomic Networking Architecture
GBT Gradient Boosted Tree
IANF Intelligent and Autonomous Network Functions
IEC International Electrotechnical Commission
IoT Internet of Things
ISO International Organization for Standardization
ITU International Telecommunication Union
JTC Joint Technical Committee
k-NN k-Nearest Neighbor
KP Knowledge Plane
LDA Linear Discriminant Analysis
LoRa Long Range
LSTM Long Short-Term Memory
LTE Long-term Evolution
MANO Management and Orchestration
MDP Markov Decision Process
MEC Multi-access Edge Computing
MIMO Multiple Input Multiple Output
ML Machine Learning
MNO Mobile Network Operator
MVNO Mobile Virtual Network Operator
NB Naive Bayes
NFV Network Function Virtualization
NGN Next Generation Network
NN Neural Network
NS Network Slicing
OAI Open Air Interface
OSPF Open Shortest Path First
QDA Quadratic Discriminant Analysis
QoE Quality of Experience
QoS Quality of Service
QoT Quality of Transmission
RAN Radio Access Network
RAT Radio Access Technology
RF Random Forest
RL Reinforcement Learning
RNN Recurrent Neural Network
SC Standardization Subcommittee
SDN Software Defined Networking
SL Supervised Learning
SLA Service Level Agreement
SINR Signal to Interference plus Noise Ratio
SON Self-organizing Network
SSL Semi-supervised Learning
SVM Support Vector Machine
TC Technical Committee
UE User Equipment
UL Unsupervised Learning
VM Virtual Machine
VoIP Voice over IP
WG Working Group
ZSM Zero-touch Network and Service Management
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2. ML techniques for zero-touch NGN management

This section presents a brief overview of the ML techniques adopted
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to automate network and service management. We briefly describe these
methods for each of the four families introduced in the previous section.

2.1. Supervised learning

SL techniques receive a dataset with vectors of input features and the
expected output for each sample and learn a model from such data. The
function can generate continuous values (regression) or a class label that
identifies the given input (classification). Thus, while regression algo-
rithms are asked to predict a numerical value from the input, classifica-
tion algorithms permit the specification of the class of input among a
given set. Supervised learning techniques are usually employed to
identify classes of traffic by automatically inspecting the packets,
allowing the classification of service requirements, or enabling the usage
of that information to forecast different trends in user behavior. The
following are some supervised learning techniques that can be applied to
ZSM:

● Linear/polynomial regression computes a linear/polynomial combi-
nation of the features of the input samples to learn a model.
Depending on the dimensionality of the feature vector, it generates a
regression line or a hyperplane that can be used to predict the value of
future instances. The application of regression-based ZSM mecha-
nisms assists operators in QoS-based network planning [11].

● Decision Tree (DT) is a graph employed to classify unlabeled input,
whose characteristics are learned from labeled samples in the training
stage. A specific feature is examined in each binary branching node.
By comparing its value with a certain threshold, the algorithm follows
the right or the left branch. The leaves represent final nodes with the
class to which the input belongs. The planning and design of networks
are eased with DTs because they can be applied to forecast user
behavior based on past traffic profiles [10].

● Random Forest (RF) is a model that uses several DTs, where each of
them provides as output individual class (classification) or mean
(regression) predictions. The RF algorithm combines the result of
each one to produce the final output. The idea is that a combination of
multiple learning models improves the overall result. The errors made
by each tree must have a low correlation with each other to produce
accurate predictions. In a similar way to DTs, RF models can predict
the requirements of mobile network subscribers by analyzing traffic
records [11].

● Logistic regression is a binary classification learning algorithm based
on the concept of probability, where the hypothesis limits the cost
function between 0 and 1. The classifier returns a probability score
between these two values when the input is processed. Depending on
the selected threshold, it decides if the example belongs to one class
or the other. This kind of regression algorithms can be efficiently
applied to channel allocation problems [16] or classification of
operation data [10].

● k-Nearest Neighbor (k-NN) assigns classes based on the proximity of
the data points among them based on some distance function (e.g.,
Euclidean). For each input sample, the algorithm evaluates the
nearest training samples and chooses the most common class to assign
it to the unlabeled input. In this way, the application of this technique
to traffic classification is straightforward [11].

● Support Vector Machine (SVM) aims to find a hyperplane that best
divides the data points belonging to different classes and acts as a
decision boundary in an n-dimensional space, n being the number of
features. The support vectors are the closest points to the hyperplane,
and they define its position and orientation, allowing the model to
find nonlinear boundaries among classes. This enables efficient
spectrum management and prediction in the RAN [13].

● Naive Bayes (NB) is a probability classifier, which is mainly used to
classify user traffic and model attacker behavior [11]. It uses the
Bayes theorem, assuming that the input features are independent of
each other, and no correlation exists among them.
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● Neural Network (NN) is a model based on the concatenation of arti-
ficial neurons, called perceptrons, which take several inputs with an
associated weight and produce a single output. These individual units
are combined in consecutive layers of different sizes to produce
complex decision making. The power and the versatility of NNs make
them useful and applicable to a wide variety of network functions,
including traffic classification and prediction, RAN management,
multi-domain orchestration, and resource management [11,13,16].

2.2. Unsupervised learning

UL algorithms do not receive any labeled example or desired output
from the dataset. On the contrary, these schemes must seek the input
structure. They promote understanding of the analyzed data and identify
patterns, but do not predict the output value or class for specific input. UL
mechanisms are useful for grouping traffic flows with similar charac-
teristics and assigning them to common slices to provide different levels
of Quality of Service (QoS) depending on the available network re-
sources. Some of the most extended techniques are as follows:

● Clustering determines the internal grouping of a set of unlabeled data,
organizes similar examples together, and distinguishes them from
other groups. This model is commonly used to group and classify user
traffic, devices, and log data [10,11,16]. It is also a good choice to deal
with interference management in the RAN [17,18]. Specific clustering
algorithms are k-means, k-medoid, and Expectation-Maximization
(EM), among many others.

● Neural Network (NN): Aside from their extensive use in SL, NNs are
also exploited with non-labeled datasets. Thus, the output layer learns
how to organize the input data and find patterns without needing a
specific target. From the UL perspective, NNs can be applied to traffic
and data classification problems [11,13].

● Dimensionality reduction helps represent the input data with fewer
dimensions to reduce redundant information that complicates the
discovery of intrinsic patterns, which is very suitable for traffic data
analysis and classification [13].

2.3. Semi-supervised learning

SSL algorithms receive as input a small amount of unlabeled data
together with a large amount of labeled data. The objective of this type of
technique is the same as that of SL, but they use many unlabeled exam-
ples to improve the accuracy of the produced model. Furthermore, SSL
algorithms are less time consuming and tedious compared to SL. SSL
techniques show their effectiveness in network traffic classification,
where the initial amount of labeled examples is low. SSL may refer to two
types of learning [19]:

● Transductive learning aims to infer the correct labels for the provided
unlabeled data. Self-training is the most common transductive
method for SSL. In this technique, a classifier is trained with the
labeled data, which is later used to classify the unlabeled set. Then,
the unlabeled data and its prediction that ensure correct prediction
are attached to the training set. With these new data, the classifier is
retrained, and the process is repeated.

● Inductive learning algorithms use the labeled and unlabeled sets as
the training examples, with the aim to predict unseen data.

We have not found specific references or examples about the direct
application of SSL to network automation, but these ML models can be
useful for both SL and UL use cases because they share characteristics
with them [13,16].

2.4. Reinforcement Learning

RL algorithms teach processing units how to make decisions by trial
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and error to maximize the reward they obtain in each task. The idea
behind RL is that the rewarded behavior will be repeated in the future. RL
algorithms are employed in a wide variety of use cases, such as slice
admission strategies, data migration in the MEC, Radio Access Technol-
ogy (RAT) selection, and allocation of resources for NS. The RL algo-
rithms are classified into two main types as follows:

● Model-based algorithms use a model of the environment that they can
access or learn themselves. By using the model, they can plan in
advance the actions that provide the best outcome. For instance, they
can evaluate the consequences of deciding on one or another option in
advance, enabling usage in proactive resource allocation in mobile
networks [16].

● Model-free agents have to learn a model from experience. This can
result in bias because the agent may perform well in the learned
model but not in the real environment. An example of a model-free
algorithm is Q-learning, which can be applied to track the varia-
tions in user behavior and traffic flows to select the most appropriate
policies [13].

3. Machine Learning in NGN management: standards,
architectures, and models

This section provides a comprehensive overview of the current ac-
tivities and initiatives performed toward the development of standard-
ized ML-based ZSM mechanisms and architectures in the context of
NGNs. We also review the international projects pushing for the appli-
cation of ML techniques to resource provisioning, network slicing, and
infrastructure management.

3.1. Standards

Different standardization bodies have devoted resources and efforts
during the last years to align criteria and work toward the common goal
of a global ML-driven ZSM framework, which will act as the foundation
pillar for the design and development of new AI-based network man-
agement and orchestration mechanisms. These initiatives are led by
important bodies and organizations, such as ETSI, ITU-T, and 3GPP. The
subsequent section provides an overview of these standardization
activities.

3.1.1. ETSI Zero-touch network & Service Management (ZSM)
ETSI created this working group [20] in 2017 to accelerate the defi-

nition of an end-to-end architectural framework designed for closed-loop
automation and optimized for data-driven ML and Artificial Intelligence
(AI) algorithms. This group was one of the first initiatives to boost the
development of automatic network management schemes and the one
that coined the ZSM term. At the moment, the ISG ZSM group has already
published reports on the ZSM requirements [21], terminology [22], and
reference architecture [23]. The group is currently working on the
specification of management interfaces for the orchestration and auto-
mation of end-to-end NS, cross-domain services, closed-loop operations,
and security aspects of the ZSM framework.

The ZSM framework reference architecture follows the trend of
evolving rigid management systems toward more flexible services. As
shown in Fig. 2, the architecture defines a set of building blocks that
enable the construction of more complex service and function chains
using interoperation patterns. It is composed of distributed management
and data services organized in management domains and integrated via
an integration fabric used to enable service consumption, communica-
tion, and integration with third-party systems. Supported by the cross-
domain integration fabric, every management domain provides a set of
ZSM service capabilities through functions that expose or consume a set
of service end-points.

Domain intelligence services [23] are in charge of intelligent
closed-loop automation by supporting different degrees of automated



Fig. 2. ETSI ZSM reference architecture. Extracted from [23].
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decision making. These services can be categorized into three classes:
decision support, decision making, and action planning. Decision making
is enabled by using decision support services, such as those based on AI
and ML. The used information is provided by the ZSM services defined in
the data collection and analytics domains. Finally, the resulting action
planning defines the orchestration actions to be executed by the ZSM
services in the control and orchestration domains.

3.1.2. ETSI Industry Specification Group (ISG) in Experiential Networked
Intelligence (ENI)

This group [24] was created to develop specifications for the defini-
tion of a cognitive network management system. The focus is oriented
toward improving the operator experience to recognize and incorporate
new knowledge. The selected approach enables the system to tune the
offered services based on changes in environmental conditions, business
goals, or user needs. Technically, the aim is to improve intelligence and
efficiency in SDN, NFV, and network slicing by using AI techniques and
context-aware policies. Multiple specifications have already been defined
and published, covering the terminology [25], requirements [26], system
architecture [27], and proof of concept framework [28]. A document
covering the application of AI to networks has also been elaborated [29].
Fig. 3 presents a simplified view of the main processing components of
the high-level functional architecture of ENI when an API broker is used.
The architecture is founded on three main blocks that perform input
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processing, analysis, and output processing. The broker aims to serve as a
gateway between different systems because there currently is no func-
tional block to translate external data formats to the ENI system.

The ENI system applies policy-driven closed control loops to manage
and monitor operator networks. It dynamically updates the acquired
knowledge to gain an understanding of the needs of the end-users and the
goals of the operators. To do this, it uses emerging technologies, such as
big data analysis and AI, learning from actions automatically taken as
well as those from other machines and humans. Multiple categories for
the level of application of AI techniques to network management have
been defined in Ref. [29], starting at basic limited aspects to fully
AI-based network management. This division in categories may be useful
for inexperienced users because it can guide them in choosing a specific
implementation of an AI-assisted network, providing information about
the self-configuration and adaptation capabilities for each kind of use
case.

3.1.3. ETSI Technical Committee (TC) in the core network and
interoperability (INT)

The ETSI TC INT [30] aims to develop specifications applied to 3GPP
networks to test interoperability, conformance, performance, and secu-
rity. The group produces test descriptions and cases to enable testing
within the 5G network slice service assurance space along with SDN,
NFV, and E2E orchestration. As a part of this committee, the Autonomic



Fig. 3. ETSI ISG ENI high-level functional architecture. Extracted from [27].
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Management and Control Intelligence for Self-managed Fixed & Mobile
Integrated Networks Working Group (AFI WG) published in 2018 a new
standard [31], in which the architectural components for autonomic,
cognitive, and self-managed networking are provided. The defined ETSI
Generic Autonomic Networking Architecture (GANA) model establishes
a paradigm called autonomic management and control of networks and
services based on closed-loop service instantiations and adaptive
operations.
Fig. 4. ETSI GANA model. Extract

110
The GANA model defines a main and functional entity, namely the
Decision-making Element (DE), that drives a control loop meant to
configure and regulate the state and behavior of one or more Managed
Entities (MEs) (i.e., system resources). Fig. 4 shows the GANA frame-
work. The architecture is divided into abstraction levels for self-
management functionality, in which internetworking control loops and
their associated DEs can be designed. DEs realize the features of the
autonomous system as a result of the decision-making behavior that
ed from [ETSI TS 103 195–2].
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performs dynamic and adaptive management and control of its associ-
ated MEs and their configurable and controllable parameters. Such ele-
ments can be embedded in a network element or in a higher level of
architecture and can be virtual or physical. The lower the position of the
element in the architecture hierarchy, the less complex the cognitive
algorithm that can be integrated into it The GANA Knowledge Plane (KP)
is defined as a controlling system within the network that builds and
maintains high-level models of the desired network behavior to provide
services and advice to other network elements. It operates by enhancing
and evolving the system intelligence, replacing and reloading DEs at
specific abstraction levels of management and control.

The GANA reference model can also be applied in designing future
network architectures that include self-managing capabilities. The model
is not constrained by any implementation-oriented architecture and tries
to avoid the limitations of the current technology-specific networking
solutions. Thus, it defines and separates generic concepts and architec-
tural principles for autonomic, cognitive, and self-managed networking.
ETSI GANA is a relevant framework in relation to the other standardi-
zation efforts because having such a generalized structure enables the
positioning of DEs at four basic abstraction levels for self-management
within network nodes depending on the desired functionality. This is
complemented by the ETSI ENI work on the improvement of the operator
experience by adding closed-loop AI mechanisms based on context-aware
and metadata-driven policies to adjust services and offer resources based
on business goals.

3.1.4. ITU-T focus group on Machine Learning for future networks
This group [32] was established in 2017 with the objective of drafting

technical reports and specifications for ML for NGNs, including in-
terfaces, architectures, protocols, algorithms, and data formats. It is an
open initiative in which ITU members and non-members collaborate to
study ML methods for NGNs. The group has provided public documents
covering topics, such as ML architectural frameworks for NGN [33] and
evaluated the achieved intelligence levels [34], data handling [35], and
use cases [36].
Fig. 5. ITU-T architectural framework for the integration of Machine L
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One of the main contributions of this group is the ML-based infra-
structure-management pipeline [33] depicted in Fig. 5. As shown in the
figure, this high-level architectural design is based on three main com-
ponents. The ML pipeline is a set of logical nodes that can be combined to
form an ML application in a network. The ML function orchestrator is a
logical node whose main tasks are to manage and coordinate nodes in the
ML pipeline. Hence, it is in charge of selecting theMLmodel and chaining
and placing the nodes. The ML sandbox is an isolated domain that allows
the hosting of independent ML pipelines to train, test, and evaluate them
before their deployment in a production environment.

Furthermore, the ITU-T provides examples for the realization of a
high-level functional architecture [33] and a data-handling framework
[35] on an IMT-2020 network (i.e., a standalone 5G network). In this
way, the functioning of both the architecture and the framework within
the 5G infrastructure is described, pointing out the role of each node and
its positioning.

3.1.5. 3GPP
In 2008, the 3rd-Generation Partnership Project (3GPP) introduced

Release 8 [37] of its wireless broadband communication standard. This
was the first one defining the Long-Term Evolution (LTE) technology that
improved the spectrum efficiency, increased the downlink and uplink
bandwidths, and introduced an all-IP network. The 3GPP brought for-
ward the concept of a Self-Organizing Network (SON) considering the
new requirements from the network operators in terms of infrastructure
management flexibility and to reduce the operating expenditure associ-
ated with the network planning and management of a large number of
nodes from more than one vendor. This paradigm has evolved in each
release since its initial definition [38]; hence, it has been extended and
improved until Release 16 [39].

SONs are defined as a set of use cases that cover all aspects of network
operation. They are based on the paradigm that the network should be
able to self manage its own resources so that it can achieve optimal
quality and performance and fulfill the network operators’ requirements
in an automatic fashion. SON solutions can be divided into three
earning (ML) in future network components. Extracted from [33].



Table 2
Summary of the ZSM standards.

Standard Organization ML-
based

Objective Architecture Use cases

ZSM ETSI Yes Boost automatic network
management

Integration fabric Orchestration and automation of end-to-end NS, cross-
domain services, closed-loop operations, and security
aspects

ENI ETSI Yes Define cognitive network
management

API Broker Policy-driven closed control loops to manage and monitor
operator networks

INT ETSI Yes Reference model to design self-
managing network architectures

Hierarchical
abstract modules

Architecture design template, closed-loop and self-
organizing networks and cross-domain services

ML for future networks ITU-T Yes Draft technical reports and
specifications for ML in NGNs

Modular pipeline High-level functional architecture and data handling
framework in 5G networks

SON 3GPP No Reduce operating expenditure 3GPP architecture Base station self-configuration, automated and continuous
optimization, and automated troubleshooting and
mitigation
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categories: (i) self-configuration (Release 8), in which newly deployed
base stations are plug-and-play configured; (ii) self-optimization (Release
9), which covers the dynamic improvement of coverage, capacity,
handover procedures, and interference mitigation; and (iii) self-healing
(Release 10), in which the network has capabilities to automatically
detect and mitigate system failures.

Note that SON-based architectures are not powered by AI; instead,
other approaches are adopted. Concretely, these architectures rely on the
closed-loop paradigm to provide autonomous functionality. The standard
defines three types of SON: (i) centralized, in which the optimization
algorithms are executed in the management system of the operator; (ii)
distributed, in which the SON mechanisms run in the network elements;
and (iii) hybrid, a combination of centralized and distributed solutions.
In this way, the following two roles are defined: the IRPManager, which
should be able to control the automatic procedures according to the
objectives and targets of the operator; and the IRPAgent, which should
support the capabilities to perform the requested action and report to the
IRPManager the success or failure result. A key point in this design is that
an easy transition procedure must be provided to change between
operator-controlled (open-loop) to autonomous (closed-loop) because
the network operator gains more trust in the SON mechanisms.
Regarding the SON algorithms themselves, the 3GPP decided not to
standardize them [38,39].

In light of the previous dissection, ETSI ZSM, ETSI TC INT, ITU-T, and
ETSI ISG ENI have been paving the way toward ML-driven ZSM by
studying the specific application of AI to network management and
orchestration. While the latter is more focused on ZSM applications in the
industry and the improvement of operator experience, the efforts of ETSI
ZSM are oriented to the development and orchestration of automatic
network management functions, which is perfectly aligned with the topic
explored in this survey. In a similar way, ETSI TC INT AFI WG has pro-
posed a referencemodel that can be applied in the design of ZSM network
architectures. Asides from that, the ITU-T group is also applying ML to
infrastructure management, but without a fully automated architecture
vision by now. In contrast, although 3GPP efforts do not rely on ML
techniques, the standard follows the closed-loop architecture paradigm,
in which the network elements are monitored, and optimization algo-
rithms react to the events and changes in the network. Table 2 presents a
summary of the discussed standards. These initiatives are in their first
steps because their main contributions to this date are the definition of
the reference architectures of each group. More specific contributions are
expected during the next times; therefore, ZSM and AI researchers should
closely follow the updates of these standardization bodies considering
that the currently proposed architectures will be additionally extended
and enriched with new functionalities.
1 https://5g-ppp.eu/cognet/.
2 https://scikit-learn.org/.
3 https://spark.apache.org/.
3.2. Research projects

Asides from standardization initiatives, such as those dissected
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earlier, different international projects have also devoted great efforts to
design, develop, and implement ML-based ZSMmechanisms over already
deployed complex network infrastructures. Concretely, in the following,
we focus on reviewing European projects that were recently finished or
are ongoing.

3.2.1. CogNet
The CogNet project1 is an H2020 5GPPP project co-funded by the

European Commission under the ICT-14-2014 call. This project aimed to
contribute to the field of autonomous network management through the
use of ML techniques employed for gathering available network data and
recognizing events and conditions to adequately respond to the dynamic
changes occurring in the network. As shown in Fig. 6, the CogNet Smart
Engine is the main component of the system that is in charge of receiving
the records, pre-processing them, selecting the appropriate ML model,
and applying the chosen module to process the data. The developed ar-
chitecture can dynamically adapt to changes by combining ML models
and network management policies. The NFV framework continuously
forwards its state and usage records to the engine, which analyzes the
data and generates some key values employed by the policy engine for
policy recommendation. The policy engine can also recommend actions
to the Management and Orchestration (MANO) stack, transforming the
abstract actions specified in certain policies into concrete ones based on
the state and configuration information from the MANO stack.

Multiple ML techniques were employed in this project to address
specific 5G network challenges in four different testbeds. SVMs were
used to analyze user traffic and classify it to perform network state pre-
dictions. In a similar manner, Deep NNs (DNNs) were employed in traffic
analysis use cases, such as in the real-time processing of social media
streams. Traffic estimation and user throughput prediction were also
supported by using RF and using RAN performance and the radio sta-
tistics of the device as the input parameters. The network structure was
optimized to improve massive multimedia data flow handling with a
three-stage component that employed k-means classification and opti-
mization based on linear regression and heuristics. From the imple-
mentation perspective, Python and R were the selected languages to
implement the ML components using well-known libraries, such as Sci-
kit-learn,2 or programming some of them from scratch. On the data
acquisition side, the modules were based on Apache Spark3 with custom
modifications.

Consequently, the outcome of this project can be considered from two
perspectives: first, from the design and the implementation of new ML
algorithms or methods, such as the fast iterative algorithm for feature
selection in unsupervised learning presented in Ref. [41], or the usage of
the probabilistic principal component analysis to leverage scores in

https://5g-ppp.eu/cognet/
https://scikit-learn.org/
https://spark.apache.org/


Fig. 6. Architecture of the CogNet project. Extracted from [40].
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unsupervised feature selection shown in Ref. [42]; and second, from the
exhaustive application of these techniques and existing ones to the
overall network management process that has served to obtain highly
valuable insights about their performance in different tasks. As an
example, the use of deep CNNs to detect noisy neighbors in cloud in-
frastructures was explored in Ref. [43]. Another example is the usage of
NN to enforce SLAs in networking services involving SDNs and VNFs
introduced in Ref. [44].

3.2.2. Selfnet
Selfnet4 is a project supported by the European Commission's Horizon

2020 Programme through the H2020-ICT-2014-2 call. It aimed to
develop a self-organizing network management framework for 5G. Using
a virtualized network infrastructure combined with AI, the framework
automates network maintenance, deployment, monitoring, and service
provisioning. The architecture [45] was based on an autonomic control
loop, aggregating an analyzer, an autonomic manager, a rule-based
tactical autonomic language, and an orchestrator.

Selfnet had the sub-objectives of designing, implementing, and vali-
dating a self-monitoring and detection subsystem, a distributed SON
automatic management engine subsystem, and a SON orchestration and
virtual infrastructure management subsystem. Considering these ele-
ments, the main contribution of the project focused on the reduction of
the service creation time in virtualized 5G networks. Moreover, Selfnet
was committed to creating a secure, reliable, and dependable network
with virtual zero downtime. Some of the main outcomes of this project
have been published. In Ref. [46], Selfnet is presented as a fully auto-
nomic and intelligent framework based on SDNs and NFVs to reduce the
operational expenditure of the 5G ecosystem. Furthermore, other works
focused on more specific tasks. Ref. [47] presented a clustering-based
monitoring tool for requesting statistics to measure the traffic flow in
SDNs. Ref. [48] proposed an artificial immune network to project and
focused on the identification of a suitable architecture that would enable
the introduction of components to host advanced AI algorithms. The
developed modules will support vertical-oriented monitoring,
control-loop stability, orchestration, resource control, anomaly detec-
tion, forecasting, and inference powered by ML-based elements.

The project recently started to produce promising results in the
networking area, as can be seen in Ref. [49], where an algorithm for
providing near-optimal VNF sharing among verticals was presented. The
concept of service shifting and how it can be integrated into 5G network
slices was also described in Ref. [50].
4 https://selfnet-5g.eu/.
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3.2.3. INSPIRE-5Gplus
INSPIRE-5Gplus5 is an ongoing project funded by the H2020 program

(ICT-20-2019 call), which aims to improve the security in 5G and NGN
architectures by leveraging existing assets and introducing novel solu-
tions exploiting the potential of AI and blockchain. Through these ob-
jectives, INSPIRE-5Gplus will provide intelligent and trusted multi-
tenancy solutions across multi-tenant infrastructures while improving
security.

In the initial study of 5G security status and future trends [51], the
increasing demand for advancements in the current security manage-
ment solutions to cope with the new requirements demanded by tech-
nologies, such as ZSM and AI, has been highlighted. Regarding network
management, the main challenge is the integration and the imple-
mentation of a security mechanism by adopting automation solutions.
Although AI has been used within the broad field of security for a long
time, synergies with NGNs, such as advanced 5G architectures, are still at
an early stage. In security-critical applications, AI is considered a key
enabler in 5G networks. Multiple approaches will be evaluated during
project development, including anomaly/intrusion detection in distrib-
uted systems, classification of security incidents, and telemetry, among
others.

Fig. 7 depicts the end-to-end security management architecture pro-
posed in INSPIRE-5Gplus. The security management domain was
decoupled from the other domains to reduce the system complexity. It
permits the evolution of security management both independently and at
the cross-domain level. Each domain also operates in an intelligent
closed-loop to provide AI-driven orchestration and management. More
insights about this project's approach can be found in Ref. [52]. Aside
from the current initial outcomes, promising results are expected because
the project partners are closely working with the ETSI ZSM standardi-
zation group.

3.2.4. 5G-VINNI
The 5G-VINNI6 project started in 2018 with support from the Euro-

pean Commission's H2020 programme under the ICT-17-2017 call. The
project mainly aimed to provide an end-to-end facility that validates the
performance of new 5G technologies by hosting trials of advanced ser-
vices. To do this, the proposed strategy includes the building of several
interworking 5G sites with user-friendly ZSM systems. However, 5G-
VINNI is not intended to simply be a group of interconnected test sites;
it is envisioned to enable the design and development of new flexible and
dynamic network architectures and the deployment and design of new
5 https://inspire-5gplus.eu/.
6 https://5g-vinni.eu/.
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Fig. 7. Architecture of the INSPIRE-5Gplus platform. Extracted from [52].

J. Gallego-Madrid et al. Digital Communications and Networks 8 (2022) 105–123
services. This will convert interconnected sites into a cloud-based
network instance with no functional boundaries that will be imple-
mented across multiple locations. The project's main sites are located in
Norway, the UK, Spain, and Greece. Its experimentation sites are in
Portugal and Germany. In this way, 5G VINNI will provide a platform for
testing and putting in trial multiple services by combining a compre-
hensive test framework, multiple interconnected 5G RAN and core in-
frastructures, and end-to-end ZSM. Heretofore, the main contributions of
this project focus on the design and setup of the architecture and network
slicing subsystems that compose both the main and experimentation sites
[53–55]. In this regard, directions and guidelines for 5G service imple-
mentation and deployment are provided in different produced docu-
ments [56–58]. The project is also exploring new closed-loop
management techniques like the service assurance architecture for
network slices as a service presented in Ref. [59].

3.2.5. 5GZORRO
5GZORRO7 is an ongoing project funded by the H2020 program

under the ICT-20-2019 call. Its goal is to apply distributed AI techniques
to produce an architecture for future 5G networks consisting of auto-
mated, flexible, and multi-stakeholder combinations and composition of
resources and services in a secure and trusted manner. To support the
distributed functioning in the 5G end-to-end service chain, 5GZORRO
proposes the adoption of Distributed Ledger Technologies (DLTs) to
provide the system with efficient security and trust. Thus, the framework
can implement a 5G service layer among multiple non-trusted parties,
where it is possible to monitor SLAs, share the spectrum, intelligently
discover resources, and automate management, among other functions.
Consequently, the cross-domain orchestration supported by the service
lifecycle automation can enforce security policies in multi-tenant and
stakeholder environments. The project is in its inception stage; thus,
7 https://5gzorro.eu/.
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there are still no public outcomes available online. However, some initial
concepts of the envisioned system were presented in Ref. [60], where the
project participants proposed a zero-touch security and trust conceptual
architecture for ubiquitous computing and connectivity in 5G networks.

3.2.6. Other projects
Aside from the previous projects, other initiatives focused on network

slicing and automatic network management. Although they did not use
AI-driven solutions for their developed network resource orchestration
platforms, we also reviewed them because they conducted significant
research in the field of automatic NGNmanagement. These activities laid
the foundations for the present-day projects that aim to apply ML tech-
niques to management architectures evolved from these proposals.

5GNorma8 was one of the 5GPPP projects funded by the Horizon
2020 framework under the call H2020-ICT-2014-2. Its principal objec-
tive was to develop a mobile network architecture capable of efficiently
handling fluctuations in traffic demand caused by heterogeneous net-
works and services. The technical approach was based on the adaptive
allocation of mobile network functions. The network was decomposed in
those functions and placed in the most appropriate locations. The
adopted multi-tenancy approach leveraged the adaptability and the ef-
ficiency of network functions and enabled the dynamic sharing and
distribution of the network resources among different operators. The
principal contribution of 5GNorma, which is the main structural element
of its flexible network design, are the three options for RAN slicing [61].
These configuration profiles differ by the degree of freedom offered for
customization and the required complexity for implementation. In the
first RAN option, each network slice may be customized down to the
physical layer; thus, the maximum degree of freedom is achieved. In the
second RAN type, the user-specific functionality is shared, as well as the
cell-specific information. In the last RAN, the complete RAN is shared by
8 http://www.it.uc3m.es/wnl/5gnorma/.
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multiple tenants. As the relevant outcomes of the project, there have been
multiple contributions to major standardization bodies, namely 3GPP,
ETSI, IETF, IEEE, and ITU-T [62].

The 5G!Pagoda9 project was funded by the European Commission's
H2020 program under the H2020-EUJ-2016-1 call. The main objective of
the project was to develop a 5G network slicing architecture to support
virtualized infrastructures composed of multi-vendor network functions.
To this end, the adopted approach was based on highly programmable
network control, network function flexible chaining, and centralized
control state management. Following this strategy, the slice-oriented
operations were logically centralized and handled by the orchestrator,
whereas the sliced network management allowed the slice operator to
manage his network. The reference architecture [63] of the project was
based on resources separated into two main groups: virtual resources
built on top of the physical resources; and hardware nodes and sub-
systems, which can also be programmed, but offer different services. It
also allowed the creation of two different generic slice types, namely
common and dedicated slices. Both can cooperate and share a similar
internal structure but have different roles. The dedicated slice acted as a
client of the common one. Finally, the partners identified six main
exploitable assets as a result of the project developments [64], namely (i)
the implementation of the 5G core network to support small messages
and data plane diversity, (ii) a network slice planner, (iii) programmable
RAN Open Air Interface, (iv) a deep data plane programmability system,
(v) a resource pool for scalable orchestration, and (vi) content delivery
networking and information-centric networking as a service.

SliceNet10 is an ongoing project supported by the European Com-
mission Horizon 2020 Programme under the H2020-ICT-2016-2 call, and
its aim is to build a control framework to support 5G vertical services
built as slices. To do this, the framework consists of managed domains
using network softwarization and slicing, maximizing the potential of 5G
infrastructures and their services using cognitive network management.
The generic SliceNet 4G-5G virtualized infrastructure deployment con-
sists of the following components: an RAN runtime slicing system that
enables the dynamic creation of slices; a FlexRAN11 controller for
monitoring and controlling the RAN domain; LL-MEC12 controller for
leveraging the SDN programmability; a JOX13 orchestrator that natively
supports network slicing; OAI-RAN and OAI-CN14 that provide the 5G
communication system; and OpenDayLight15 for controlling L3 routing
capabilities and controlled by VELOX to install the connectivity policies
required to maintain multi-domain slices. A recently released ETSI
technical document, which proposes the application of ETSI TC INT
GANA federated knowledge planes for E2E multi-domain management
and control of slices, used components prototyped and implemented in
the SliceNet project.16

In summary, the CogNet and Selfnet projects laid the foundations of
the design and development of autonomous management and orches-
tration frameworks for NGNs. While Cognet provided constructive
knowledge about the performance results when applying ML techniques
to the network management process, Selfnet developed one of the first
autonomous closed-loop frameworks that aim to provision heteroge-
neous networks with self-organizing capabilities. In turn, 5GNorma and
5G!Pagoda deeply studied the network slicing architectures and the
adaptive allocation of VNFs to efficiently handle traffic fluctuations in
NGNs. In line with this, Slicenet currently focuses on the design of a 5G
cognitive control framework with cross-domain network slicing
9 https://5g-pagoda.aalto.fi/.
10 https://slicenet.eu/.
11 https://mosaic5g.io/flexran/.
12 https://mosaic5g.io/ll-mec/.
13 https://mosaic5g.io/jox/.
14 https://www.openairinterface.org/.
15 https://www.opendaylight.org/.
16 https://slicenet.eu/slicenet-poc-contributions/.
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capabilities, which employs state-of-the-art function virtualization tech-
niques. Furthermore, 5G-VINNI will provide an end-to-end 5G distrib-
uted architecture with self-configuration capabilities, which will be
available to host tests of advanced 5G services. Aside from that, inter-
ested researchers and practitioners should periodically track the contri-
butions of 5GROWTH, INSPIRE-5Gplus, and 5GZORRO projects, which
are now working on the automation of end-to-end communications in
industry verticals, on the introduction of AI-powered security solutions in
SONs, and on the development of ML- and DLT-driven ZSM security and
trust distributed architecture, respectively. Table 3 presents a summary
of the reviewed project's aims and approaches.

4. ML-driven network management and orchestration functions

This section discusses in-depth the research proposals addressing the
application of AI to the management and orchestration of different
network functions, facilitating the full integration of ZSM in NGNs. The
discussion is divided according to the role of the reviewed solutions
within the network and based on the network functions that must be
automated using ML as described in Ref. [10]. This survey aims to
concisely examine the corpus of proposals accumulated during recent
years with relation to the ZSM concept. We address different approaches
and methodologies to give a holistic view of the current ZSM landscape.
We have conducted an exhaustive search in large academic search en-
gines, such as science.gov, Google Scholar, Microsoft Academic, and
Semantic Scholar, and the repositories of technical publishers. Table 4
presents a summary of the proposals comprehensively reviewed hereon.

4.1. Flow inspection

This is a central task in ZSM systems that involves classifying traffic
depending on their source or destination, type of transported data, pri-
ority marks, etc. It aims at giving adequate treatment in terms of routing
or QoS to each traffic flow.

Ref. [65] built a network slicing architecture that uses ML to classify
mobile application traffic early to apply different QoS levels. They pre-
pared a clustering model to group and label applications with similar
traffic characteristics. The input data for this model were the sizes of the
first five packets of each flow and the source and destination ports. They
then used K-means to determine the clusters by previously normalizing
all the features in the dataset. Consequently, the model set three clusters
associated with three different slices (i.e., QoS categories). Next, this
output was used as the training dataset to test the classification model
performance with five SL algorithms, namely NB, SVM, NN, Gradient
Boosted Tree (GBT), and RF. The results showed that all the algorithms
achieved a high accuracy (>96%), with GBT and RF showing the best
performances by classifying traffic flows with almost 100% accuracy.

Ref. [66] proposed a payload-based traffic classification using DL
models in SDNs, to provide an efficient QoS for each application. They
placed the classifier modules in the control plane, allowing the classifi-
cation decision to be used in the data plane. The employed dataset only
contained the payload of packets because omitting the header informa-
tion helped improve the model generalization performance with unseen
packets. The payload was treated as image data, grouping the bits into
pixels. They trained two DLmodels to classify the network traffic, namely
a multi-layer Long Short-TermMemory (LSTM), which is a special kind of
NN, and a combination of a single-layer LSTM and a CNN. In addition,
they used a model tuning procedure to find the optimal hyper-parameters
for each dataset. Both DL models were compared on the basis of the
F1-score measure. In the conducted experiments, the multi-layer LSTM
model performed better than the other one. The authors claimed that this
model is a promising candidate for solving the network traffic classifi-
cation problem.

Phan et al. [67] developed an RL-based control framework for traffic
flow matching to improve the monitoring performance in SDN networks
and proactively prevent flow-table overflow in SDN switches. First, the
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Table 3
Summary of projects.

Project Status Objective ML techniques Technologies Outcome

Cognet Ended Network autonomous management with
ML

NNs. SVMs,
clustering

NFV, SDN ML algorithms or methods, applications of ML to
NGNs

Selfnet Ended Self-organizing network management
framework for 5G

NNs, clustering NFV, SDN Fully autonomic and intelligent framework

5GROWTH Ongoing Empower industries with AI-driven 5G
solution

NNs NFV Identification of suitable architecture to host
advanced AI algorithms

INSPIRE-5Gplus Ongoing Improve 5G and NGN security NNs NFV, SDN, MEC, IoT,
DLTs

End-to-end security management architecture

5G-VINNI Ongoing Provide end-to-end ZSM facility to validate
5G performance trials

– – Architecture and NS subsystems

5GZORRO Ongoing Apply distributed AI to produce a 5G
architecture

– DLTs Zero-touch security conceptual architecture

5GNORMA Ended Develop a mobile network architecture to
handle traffic fluctuations

– NFV, SDN RAN slicing architecture

5G!PAGODA Ended Design a 5G NS architecture to support
multi-vendor NFs

– NFV, SDN 5G core network, programmable RAN and data
plane programmability system

SliceNet Ongoing Build a framework to support 5G vertical
services as slices

– NFV, SDN RAN runtime slicing system, RAN controller and an
orchestrator.

Table 4
Summary of ML-driven ZSM proposals from the academia.

Work Network function ML algorithm

Flow
Inspection

Multi-domain
management

RAN
management

Network resource
management

DT RF k-
NN

SVM NB NN Clustering (k-means/
medoids)

RL

[65] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[66] ✓ ✓

[67] ✓ ✓ ✓

[68] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[69] ✓ ✓ ✓

[70] ✓ ✓

[71] ✓ ✓

[72] ✓ ✓ ✓

[73] ✓ ✓ ✓

[74] ✓ ✓ ✓

[75] ✓ ✓ ✓

[77] ✓ ✓ ✓

[79] ✓ ✓

[80] ✓ ✓

[81] ✓ ✓

[82] ✓ ✓ ✓ ✓

[83] ✓ ✓

[76] ✓ ✓

[78] ✓ ✓

[85] ✓ ✓

[86] ✓ ✓ ✓

[87] ✓ ✓

[88] ✓ ✓

[89] ✓ ✓ ✓

[90] ✓ ✓ ✓

[91] ✓ ✓

[92] ✓ ✓

[93] ✓ ✓ ✓

[94] ✓ ✓
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authors proposed a traffic flow matching control mechanism that uses
Q-learning to optimize the traffic granularity in the data plane, consid-
ering the devices as the environment for the RL algorithm. Next, they
designed a policy creation module that was integrated into the Q-DATA
framework based on the previously explained mechanism. This frame-
work efficiently provided detailed traffic flow information using SVMs to
analyze the traffic and predict the performance degradation in the SDN
switches. The policy creation module determined the optimum action
required to improve the traffic flow matching scheme with this infor-
mation. Multiple experiments were performed in a real-world scenario
and demonstrated that the new framework provides significant perfor-
mance benefits compared to traditional SDN controllers.

Ref. [68] proposed a proof of concept of an ML-based approach to
predict the traffic demands in optical networks composed of chained
116
VNFs. They considered the network model as a directed graph of nodes
and a set of physical links. In this approach, the traffic was represented
by different demands, which were flows generated between a source
and a destination node during a certain period of time. The time of the
experiment was divided into time intervals. The study aimed to predict
the source and destination nodes. The problem was considered as a
classification task, but the number of possible classes in large networks
can be notably high, making the multiclass prediction quite complex.
Thus, the authors simplified the problem by transforming it into a bi-
nary classification problem. To do this, they assumed that the number
of learned classifiers is equal to the number of possible demands; hence,
the system predicts if each demand will occur in the next time period.
They considered eight different classification algorithms, namely k-NN,
NN, SVM, DT, RF, Gaussian NB, Linear Discriminant Analysis (LDA),
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and Quadratic Discriminant Analysis (QDA). The dataset was obtained
from a real network that connected 12 cities in Poland. The LDA was the
best classifier in all the experiments. Furthermore, the length of the
VNF chains noticeably affected the classifier performance because the
longer chains generated more possible demand pairs and improved the
classification quality.

One of the main problems in traffic flow classification is the avail-
ability of training data, which was solved in these works by dividing the
operation of the proposed systems into two stages. In the first stage, the
data are prepared by using a different technique or by treating the traffic
flows in a different manner. For example, [65,67] used clustering and
SVMs to obtain the training data and applied SL and Q-learning,
respectively, to inspect the traffic flows. A different approach was
implemented in Ref. [66]. The training and classification were performed
with the same traffic data, but only the headers in the training and the
payload in the classification procedure are used. A promising solution for
solving the lack of training data in this kind of scenario was proposed by
using Generative Adversarial Networks (GANs), which permit the pro-
duction of artificial data that comply with the same statistics as a given
dataset. The discussed proposals showed that SL techniques are pre-
dominant over other ML models when applied to traffic flow classifica-
tion because operators and network managers have pre-conceived SLAs
and policies to help classify traffic flows and service requirements. In this
manner, the application of QoS actions can be performedmore efficiently
and predefined guidelines can be followed.

4.2. Multi-domain management

Given the rise of resource-sharing approaches among different oper-
ators (i.e., multi-tenancy) or the decentralization of network functions by
splitting different infrastructure segments into separated and self-
contained entities, efficient and intelligent management of these
distributed network domains is crucial for the adequate operation of the
end-to-end system.

Ref. [69] proposed a cognitive inter-domain networking framework
with multi-agent DRL and multi-broker orchestration for multi-domain
optical networks. The framework permits broker agents to infer
optimal service provisioning policies from the network state information
with DNN. Each broker acts as an autonomous learning agent, whose
brain is the DRL module. When an inter-domain service request arrives,
the broker analyzes the current network state and generates a new policy
using DRL to help the service manager take a certain action. The domain
manager then establishes the service and returns the feedback given
along with the network state and the action taken to the learning agent.
The networking framework performance was evaluated in a topology
with four domains and two brokers. The results showed that the agents
quickly learn optimal policies, and the brokers achieve higher rewards
compared with other schemes.

Liu et al. [70] presented a hierarchical learning framework for
inter-domain service provisioning in software-defined elastic optical
networking. Their framework was based on a hierarchical architecture of
brokers, which collaborate with the managers of each domain to effi-
ciently provide global services. Each domain manager is responsible for
managing a subset of the global networks, providing intra-domain ser-
vice provisioning, monitoring, and traffic engineering. The broker plane
is above the domain manager plane to handle inter-domain service re-
quests and global optimizations. The local domain managers handle
intra-domain lightpath requests, list all available paths and inquire the
cognition agent to get a Quality-of-Transmission (QoT) prediction. Local
managers report to the broker information on the available path seg-
ments and their QoT prediction values. The broker then uses these data to
establish inter-domain service provisioning. NNs are used in the cogni-
tion agents of each domain because of their strong capability to
approximate complex nonlinear functions. Each domain NN uses infor-
mation provided by the optical performance monitors to obtain a list of
local prediction values uploaded to the broker-level NN to calculate the
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inter-domain predictions. The experiments showed that the framework
provides an efficient provisioning scheme, while its scalability capabil-
ities remain to be fully assessed.

In [71], the authors designed an ML QoT estimation technique for the
alien wavelength light path provisioning of inter-and intra-domain
traffic. The proposed framework, where the scheme was integrated, was
divided into the broker, domain manager, and the data planes. Domain
managers report the QoT estimations of the virtual topologies and the
monitoring information of the alien wavelength to the broker. To predict
the QoT, the scheme uses NN with two hidden layers and 10 nodes in
each one, which was the optimal configuration the authors found. It takes
as input the power measurements of all the channels and the noise level
of each link. The developed estimator was tested in an experiment and
showed an average estimation error of less than 6%.

Shin et al. [72] proposed an RL-based distributed radio access scheme
that enables dynamic multi-channel spectrum sharing while minimizing
interference among Mobile Network Operators (MNOs). This scheme is
designed for scenarios where multiple MNOs share a single cellular band.
A reward function based on the Signal to Interference plus Noise Ratio
(SINR) is designed for MNOs to learn sharing channels fairly. The SINR of
the accessed channel is used as a reward value to perform RL and select
optimal radio resources to determine the frequency channel to be used. A
positive value is used if the value is above a certain threshold. The reward
is negative if it is below the threshold. The authors performed simula-
tions to validate the proposal in a simplified experimental environment
comprising two MNOs with two evolved Node Bs (eNBs) each. In the
simulations, the reward value was obtained by using the number of
collision channels and successful access channels. The results showed
that the scheme guarantees the fairness of spectrum sharing among the
operators and increases the throughput.

Ref. [73] proposed a DL-based prediction scheme to manage the
resource leasing and caching process. This scheme aimed to improve the
profit of Mobile Virtual Network Operators (MVNO). The key idea re-
volves around using virtual cache storage resource sharing among
MVNOs. That is, storing the most popular video contents at the Base
Stations (BSs) to reduce the usage of the backhaul network and, conse-
quently, the delay of users’ access. To find the optimal DL model, an RL
searching scheme was also proposed to direct the exploration in the di-
rection of models with a better performance. The DL model can be CNNs,
RNNs, or Convolutional Recurrent NNs. The architecture is composed of
a central controller implemented at the cloud data center and by a slave
node located in the BS. The master node searches, selects, and trains the
most suitable prediction model. It also collects data and predicts the
cache usage and the future popularity of the video content. The slave
nodes store the content recommended by the controller and gather usage
statistics. The schemes were tested in simulations, showing that the DL
model generation engine can create models in an efficient and autono-
mous manner. The generated models had high accuracy, which reduces
network traffic by caching popular video content.

Zhang et al. [74] addressed the problem of controller synchroniza-
tions in multi-domain SDNs. They formulated the problem as a Markov
Decision Process (MDP) and applied RL in combination with DNN to train
a smart and scalable controller synchronization policy, called the
Multi-Armed Cooperative Synchronization (MACS). The policy aims to
optimize the network performance enhancements provided by the cor-
rect synchronization among SDN controllers. DNNs were used in MACS
to take advantage of their ability in learning the changing network pat-
terns and maximize the usage of the limited synchronization budget. In
the conducted simulations, MACS achieved much higher performance
results than the existing SDN controller synchronization algorithms.

Although their capabilities to scale in large scenarios remain to be
assessed, hierarchical approaches are predominant in solving the multi-
domain management problem in ZSM because, in this kind of solution,
local domain agents lack visibility of the whole network, leading to po-
tential problems in path prediction to other domains. Moreover, giving a
global network view to these agents is not feasible because of the
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associated privacy issues that this implies. Apart from that, the error
accumulation that occurs when the prediction results are propagated
upwards may significantly decrease the system performance [70,71];
thus, mechanisms to control and correct these errors are needed. In this
way, someworks have focused their efforts on improving the hierarchical
learning efficiency [70]. Furthermore, operating ML-based multi-domain
architectures is very costly due to the fact that ML models would require
too many samples to be trained properly in real time. Finally, RL has
emerged as a well-balanced solution for retrieving information on
different domains and selecting the best ML model to make the appro-
priate predictions.

4.3. RAN management

The envisioned coexistence of multiple RATs in future networks re-
quires the development of complex management policies to efficiently
operate radio resources. The integration of intelligence in this part of the
network permits the design of smart schedulers and managers that will
provide high-performance techniques to handle heterogeneous traffic
demands.

Ref. [75] proposed an RAN slicing scheme based on an offline RL
algorithm that allocates radio resources according to previously observed
traffic load changes. The solution was focused on dynamic
Vehicle-to-Vehicle (V2V) scenarios. In the designed system, the slicing
controller is in charge of executing the RL algorithm, namely Q-learning,
based on soft-max decision making for the uplink and downlink of each
slice. As explained by the authors, the algorithm operates offline because
the online operation could lead to performance degradation, considering
that wrong decisions could be made in the exploration process. Thus, the
slicing controller operates with a simulated network model that allows
the algorithm to evaluate the performance of the considered actions
before using them in the real network. The solution was evaluated
through extensive computer simulations using MATLAB and showed that
the proposed scheme efficiently improves the network performance and
outperforms other solutions.

In [76], a DL-based joint pilot design and a channel estimation
scheme were proposed. The objective was to apply the technique of
minimizing the mean square error of the channel estimation for MIMO
channels because there always exists an inter-user interference in MIMO
systems, which eventually leads to an increase in the estimation error.
The pilot design was constructed with two-layer NNs. The channel esti-
mation was supported by DNNs. All NNs were jointly trained to minimize
the mean square error of the channel estimation. They were trained
offline by using channel and noise examples generated following real
channel and noise statistics. Subsequently, the pilots proved to be non-
orthogonal, and the channel estimator was nonlinear. Both mechanisms
were evaluated through extensive numerical simulations. Consequently,
the scheme significantly outperformed the existing linear estimation
solutions. Finally, the scheme was tested with SNR values different from
the training ones, proving that the proposed channel estimation method
was robust.

Ref. [77] developed an intelligent wireless channel allocation algo-
rithm for high-altitude platform station 5G massive MIMO systems. To
provide autonomous learning to the scheme, they combined Q-learning
RL and back-propagation NNs. They modeled the channel assignment
problem as an MDP and solved it with RL. Massive MIMO communica-
tions involve a huge number of connections, and the RL state space in-
creases accordingly. It is difficult to manage this huge space in practice;
hence, a back-propagation NN was used to estimate the Q value. In this
solution, every Q update is used as an example input to train the network.
The system incorporating the proposed solution resulted in an overall
performance improvement compared with a random channel allocation.

Ref. [78] proposed a DL scheme for joint channel estimation and pilot
signal design applied to two different scenarios of fading, namely
quasi-static block fading scenario and a time-varying fading one. They
used GANs to generate channel sample data to train the system correctly.
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In the first scenario, a deep autoencoder based on an FNN and a
CNN-based decoder were developed. The autoencoder learns the MIMO
channel coefficients while optimizing the pilot signal based on the
received SNR feedback. In the second scenario, the scheme operates in
the same way, but by combining an RNN and a CNN to learn temporal
features more effectively. They also used LSTM to improve the learning of
these temporal features. The proposed scheme was evaluated with
extensive numerical and experimental tests to demonstrate that it can
increase the performance and effectiveness of existing baseline schemes.

Lynch et al. [79] automated the design process of link allocation al-
gorithms for 5G heterogeneous wireless networks using evolutionary
learning. The automation through the evolution design procedure saves
the costly manual algorithm design effort. The evolved schedulers can
only use the link quality reports collected from the system to optimize the
controller design in real time. An algorithm for generating schedules in
every time slot was also developed to compute the statistical features
from the link quality measurements. It then maps these features to an
optimized schedule for each cell of the system. Two different model
classes were studied, namely, a grammar-based genetic programming
model and a fixed-topology NN, whose weights were optimized by a
genetic algorithm. The authors evaluated both models by running each
one 30 times in a simulated enterprise environment with 12 LTE and
eight WiFi cells. The best resulting evolved schedulers were compared on
unseen test cases and with baseline heuristics, showing better results in
network performance and downlink rates.

In [80], an RL-based distributed channel selection algorithm for
massive IoT communications was designed. Given the constraints of IoT
devices, the scheme was developed considering minimal memory and
computation capabilities. The distributed channel selection problem was
considered a multi-armed bandit problem. The objective was to maxi-
mize the total number of frames successfully transmitted. In this work,
the strategy used to solve the problem was a tug-of-war, a well-known
technique to make a series of decisions for maximizing the total sum of
obtained RL rewards that frequently change. This strategy was applied to
explore the appropriate channel selection by simply checking the
reception of ACK frames. That is, the employed channel is rewarded if the
device receives the ACK. The proposal was runnable on constrained IoT
devices and showed that prototypes could dynamically decide on the best
available channel respecting fairness among the rest of the devices.

Politanskyi et al. [81] applied UL in cognitive radio to plan the dis-
tribution of free and busy channels. To this end, they developed an al-
gorithm for scanning free and occupied frequency bands to reduce the
allocation time and increase the transmission speed in the cognitive
radio. Themethod improved the traditional linear frequency model using
a two-dimensional channel distribution. The designed model based on
SVMs was tailored to channels that transmit Voice over IP (VoIP) traffic
in LTE. The results of the conducted experiments showed that applying
this model reduces channel search time by 10%.

Ref. [82] presented a slice admission strategy based on RL. The 5G
flexible RAN considered the use case, where services from different
providers are virtualized over the same infrastructure. The RL agent was
embedded in the orchestrator and trained to manage the slice admission,
setup, scaling, tear-down, and reward computation. This strategy aimed
to maximize the profit of the infrastructure provider when providing
multiple services with different priorities. Therefore, the problem was
considered as a loss minimization problem. The RL agent was based on an
NN and modeled as a stochastic policy network optimized by applying
gradient descent. The optimization algorithm updated the weights of the
NN and gradually increased the cumulative reward, converging to a
policy that minimized the total loss. In the performed simulations, the
designed policy achieved 50% lower loss than static heuristics and 23%
compared to threshold heuristics.

Sandoval et al. [83] designed an RL framework that decides which
RAT should an IoT node employ when reporting events. The proposed
policies considered the global state of the node and aimed to maximize
performance while running in constrained IoT devices. The scheme was
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based on evolution strategies, a type of genetic algorithm. The RL reward
was set as the priority of the message multiplied by the length in bits of
the packet and divided by the transmission delay. Thus, the nodes took
advantage of reporting events as fast as possible. The reward units were
bits per second; hence, the reward function maximized the prioritized
throughput of a node. Extensive solution simulations were performed by
modelling an IoT network with cellular and Long Range (LoRa) networks.
The presented approach outperformed other solutions, improving the
rewards by 75%.

The ML-based contributions to automate RAN management proced-
ures are mainly based on RL. In this segment of the network, the ML
model must rapidly adapt to the changes in the radio medium. This can
be achieved with this kind of algorithms occasionally supported by NNs
that receive continuous feedback from the medium. However, main-
taining the online training of the ML algorithm is difficult in terms of the
computation costs due to the ever-changing RAN characteristics. This is
why most of the proposed approaches in the literature perform an offline
training of the solution that is later embedded into the final device. This
approach presents the advantage of using constrained devices as smart
objects [84]. The current proposals focus on evolutionary scheduling,
radio resource allocation, channel selection, and channel estimation.

4.4. Network resource management

Due to the dispersion of different networks and computing compo-
nents, resource management in large-scale distributed networks is an
intricate challenge. Thus, the failure points in the infrastructure are
numerous and difficult to locate in the case of malfunctioning. ML-based
monitoring tools can easily learn anomaly patterns and detect, or even
predict the fault location. Moreover, NFV has fostered the migration of
network functions operating in expensive and inflexible dedicated
hardware to software components that run on top of the generic com-
ponents in the form of VNFs. Nevertheless, numerous challenges arise
with this change of paradigm, including the mapping of virtual resources
to physical ones. ML-based procedures can easily be in charge of these
operations, improving the static solutions commonly used in legacy
networks.

Ref. [85] proposed an RL-based VNF performance prediction and
placement module to leverage end-to-end performance predictions to
automate VNF placement. The architecture of this solution was divided
into three layers and comprised the devices, NFV infrastructure, and OSM
MANO. Furthermore, the framework included four different agents,
namely an application monitoring agent to keep track of the application
performance, a node-monitoring agent to supervise the resource utili-
zation of each node, a prediction agent to anticipate the VNF perfor-
mance and send this information to the OSM MANO, and a placement
agent to instantiate VNFs in more suitable locations. The RL approach of
the problem uses adaptive Q-learning to predict the total service time of
an end-to-end application running VNF video transcoding, which reflects
the transmission efficiency and the processing power of the VNF. The
solution was tested at the University of Bristol integrated within the
5GINFIRE infrastructure.17 The experiments showed better adaptability
to network traffic changes than models based on SL. In addition, the
developed model predicted the VNF performance with 45% more accu-
racy than SL models.

De Vita et al. [86] designed a DRL model to manage MEC systems
without explicit network knowledge. The reference scenario consists of
an LTE network, where eNBs are connected to MEC servers used as local
repositories. An RL model was developed to deploy a policy that decides
when it is necessary to move data from one eNB to another depending on
the network state and the user position. The proposed approach included
a DNN to predict the Q-values associated with a generic state for the RL
algorithm within the RL model. The simulation environment was
17 https://5ginfire.eu/.
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composed of the MEC LTE network emulated by using SimuLTE and INET
simulation frameworks in OMNeTþþ, and the DRL engine implemented
using Keras. In the simulations, the DRL model improved the overall
system performance compared to the scenario without any dynamic data
migration policy.

Ref. [87] proposed DRL-driven network architecture for automatic
routing in SDNs that employs a closed-loop network control mechanism
to interact with the network and optimize traffic routing. The SDN
controller is connected to the DRL agent and to the forwarding plane. It
collects the network status information and generates the flow table rules
according to the action indicated by the DRL agent. The traffic moni-
toring module predicts different traffic flows and applies policies to avoid
network congestion. These policies are generated by the DRL agent,
which gains experience by interacting with the network in the
closed-loop architecture. Once trained, it can achieve a near-optimal
routing configuration. The architecture was compared against Open
Shortest Path First (OSPF) and Equal-Cost Multi-Path (ECMP) routing
achieved good convergence and effectiveness evidenced by packet delay
reduction and a network throughput increase.

Kim et al. [88] introduced a dynamic network resource management
and adjustment system based on RL. Their proposal was based on the
capability of multiple tenants to negotiate with the provider and manage
their resource allocation to maximize their profit. The dynamic resource
trading system was modeled as an MDP and based on Q-learning. It
operated by learning the reward resulting from the previous action while
fulfilling the requirements of different traffic flows. The scheme was
evaluated by means of comprehensive MATLAB simulations against
existing fixed resource allocation methods. The results showed that it
could notably increase the tenant's profit.

Ref. [89] presented a DRL network slicing orchestration system. This
solution uses DRL to orchestrate the resources of the RAN, computing
nodes, and transportation network. A smart agent learns while the system
is working on the needs of the network slices and dynamically orches-
trates the resources to optimize the performance of end-to-end traffic
flows. Therefore, the system also guarantees that the slices meet their
corresponding SLA. The virtualization of radio resources was realized by
implementing a hypervisor based on Open Air Interface (OAI) that in-
cludes new user scheduling methods to match virtual resources to
physical ones. The traffic flow bandwidth was handled with SDNs. The
computing resources were controlled by a mechanism that manages the
number of threads occupied by each user. The prototype was tested and
compared with a baseline approach, obtaining a 3.69x improvement.

Raza et al. [90] examined the application of two types of ML algo-
rithms, namely SL and RL, to the slice admission problem in 5G networks.
The SL solution was based on big data analytics for processing historical
network data for predicting the temporal variations of the resource re-
quirements of each slice. For each request, the SL module predicts the
requirements of the incoming slice and rejects requests expected to create
resource contentions. The RL agent is modeled as a stochastic policy
network that uses an NN to represent the policy. The NN receives an array
describing how the resources are used and the request requirements.
Consequently, it outputs the probability of accepting or rejecting the slice
request. The orchestrator uses this information to decide on the action to
be taken. Both models were compared with static approaches. The results
showed that using ML significantly reduced the losses of infrastructure
providers.

Ref. [91] presented an ML-driven auto-scaling prediction scheme and
a service function chain placement model for MEC-enabled 5G networks.
Both classification and regression models were proposed to estimate the
required number of user plane function instances to ensure that the User
Equipment (UE) requirements are satisfied while the network resources
are efficiently used. These SL models aimed to identify and exploit the
hidden patterns in traffic flows to predict the scaling decisions in
advance. The authors also designed an integer linear programming
technique to solve the UE association and the service function chain
composition. Finally, a heuristic algorithm was developed to address the

https://5ginfire.eu/
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system's scalability. The whole solution was evaluated through simula-
tions. The results showed that both NN-based solutions could efficiently
predict the auto-scaling needs of the network. However, the regression
model outperformed the classification one in terms of accuracy.
Furthermore, the average latency can be significantly reduced by placing
the chain functions at the MEC nodes according to their demands.

Ref. [92] presented MAPLE, an ML-based approach for the efficient
placement and configuration of VNFs. The solution divides the network
of infrastructure providers intomultiple clusters to reduce the complexity
of the placement procedure. In this way, the hardware and network
resource consumption can be efficiently optimized while fulfilling the
requirements of different users. The model was based on multi-criteria
k-medoid clustering, which divides physical resources into a set of
disjoint clusters following certain attributes established by the adminis-
trators. A statistical technique was also designed to reduce the clustering
time and improve the cluster quality. Finally, relying on this division, an
ML-based placement and a readjustment model dynamically adapts the
mapping of requested VNFs to the physical resources while ensuring
minimal resource waste and improved QoS for users. This last procedure
was performed in each cluster only for the subset of the physical network
managed by itself. The proposal was evaluated in a realistic environment
that considered a large-scale network topology. Compared to migration
techniques without clustering, the scheme reduced the CPU usage by
20%, energy consumption by 25%, and bandwidth utilization by 20%.

The HYPER-VINES framework, which is an ML-based framework that
detects and localizes faults and performance issues in multi-cloud systems,
was presented in Ref. [93]. It aimed to improve the availability and reli-
ability of VNFs in cloud infrastructures. To this end, the framework
retrieved performance markers from cloud management platforms over
standard interfaces, consequently obtaining large volumes of multi-source
and highly dimensional operational data. These data were pre-processed
to remove the biases in the processing stage. Afterwards, the produced
dataset was analyzed in a two-stage detection subsystem,whichfirst used a
shallow ML to eliminate the non-faulting cases and then located and clas-
sified the detected fault cases into both imminent and manifested faults
using SVMs. The framework was evaluated using a dataset, including real
fault logs. The results demonstrated good accuracy and handling of the
detection and localization of network impairments and performance issues.

Zhu et al. [94] designed an SL-based QoS assurance architecture for
5G networks. The main function of the systemwas to use ML to detect the
QoS anomalies based on historical data. It can also trigger automatic
mitigation procedures or predict future anomalies with high confidence.
The 5G QoS-related data were gathered from the KPIs defined in the user
equipment and in the access and core network. The data were then
pre-processed, cleaned, and transformed into a unified format. A C4.5 DT
was used as the SL algorithm to build a model between the QoS data and
the KPI parameters. The anomaly detector can spot anomalies in the
network, applications, and services. Consequently, it triggered attenua-
tion mechanisms. The architecture was tested with five different traffic
datasets and showed more than 96% accuracy in anomaly detection.

Resource management is a wide research field that can be considered
from diverse points of view; thus, several ML approaches have been
found in the literature. RL is usually adopted to flexibly orchestrate re-
sources along time in closed-loop solutions and give the network the
ability to react in real time to the changes in user demands. These
mechanisms obtain the necessary network information from diverse
monitoring agents, which must be placed throughout the whole archi-
tecture. Meanwhile, SL is mainly applied to slice admission, VNF place-
ment, and resource usage prediction because the application of this kind
of algorithm enables the development of sophisticated sensing and
recognition tasks due to their ability to automatically deal with network
complexity, size, and heterogeneity from the resource management point
of view. When these ML-based models are applied, high increases in the
performance metrics are obtained because resource management in large
and distributed networks greatly benefits from dynamic and adaptable
policies and decisions.
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4.5. Security

The softwarization process performed in the NGNs is bringing a new
horizon of possibilities and changes. Many of the traditional solutions
adopted in the ossified networks are now obsolete. Thus, the security
procedures must be reshaped to cope with the new network paradigm
requirements. ML is conceived as the director to lead this shifting by
supporting encryption design, access control, authentication, integrity, or
confidentiality mechanisms that can dynamically adapt to the changing
nature of the envisioned heterogeneous networks.

Furthermore, the relevance of network security is growing each day
in our society because of the reliance we have on computer networks and
services. Accordingly, the application of ML techniques in ZSM-based
security is deeply studied by the scientific community. Several works
exploring the application of ML algorithms to different security topics
have been presented during the last years [95–100]. Furthermore,
numerous surveys covering the state-of-the-art in this area have been
published [101–106]. One recent work was presented in Ref. [107],
which identified potential attacks to ZSM platforms and possible miti-
gation measures. Consequently, this field of study has already been
exhaustively examined; therefore, the security concerns of the ML-based
ZSM remain out of the scope of this survey. We refer the readers to the
abovementioned works.

5. Challenges and future lines

This section highlights the main challenges and the future lines to be
addressed in the design, development, and operation phases of ML-based
ZSM techniques.

5.1. Computation complexity

ML algorithms require a high amount of computation resources to
operate, which conflicts with the necessities of ZSM networks because
computation efficiency is as important as communication performance
[70,75]. The high latency when performing complex operations is
incompatible with time-sensitive services; thus, the optimization of ML
algorithms is a key factor in NGNs. Moreover, the optimized and intel-
ligent placement of network management functions along with the
infrastructure is an open issue that should be tackled to reach a balance
between the diverse computation requirements of these functions and the
QoS demanded by applications.

5.2. ML model training and maintenance in dynamic networks

The dynamism of traffic flows associated with heterogeneous net-
works makes it difficult to train and maintain ML models during opera-
tion in an efficient way in the long term [66,68]. The state and operating
conditions in this kind of network are continuously changing; hence,
reactive offline learning cannot cope with traffic fluctuations and the new
situations produced by the intervention of ML frameworks. If the system
only uses offline learning, the trained models will only be useful and
accurate for a limited period of time and for certain known situations.
Therefore, online learning has arisen as a promising solution for handling
these constant changes [79,83]. To this end, adaptive decision making
and ML model adjustments are performed based on the real-time feed-
back received from the network. Consequently, the system can tune the
model parameters to deal with the current traffic flow characteristics.

5.3. Scalability

As studied in the previous section, the deployment of ML-based ZSM
solutions is being made in both distributed and centralized manners. The
distributed workaround in a MEC-based architecture or in multiple
network subsets decreases the latency of communications, benefiting
time-sensitive services. However, it may reduce prediction accuracy due
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to the exploitation of incomplete local information. In hierarchical pro-
posals, error accumulation may also produce a bigger and unintended
decrease in the prediction performance [70,71]. In contrast, centralized
systems collect global information from the whole network, make better
decisions, and provide network optimization. However, this solution
depends on the constant collection of information and produces a large
amount of signaling messages, which may lead to higher traffic load and
synchronization problems. Whether to use a centralized or a distributed
solution remains an open problem that should be further studied.

5.4. Cross-layer intelligence

Traditionally, ML has been used in networkmanagement services that
handle only one protocol stack layer. This limits the potential large-scale
intelligence that this kind of algorithm can provide. In heterogeneous
networks, the cross-layer cooperation of networking functions currently
plays a fundamental role in developing more flexible and efficient solu-
tions [108]. For instance, it can be applied in the RAN to optimize the
wireless channel operation by dynamically adapting both the link and
physical layers accordingly. Therefore, the exploration of cross-layer
solutions will open up a wide variety of techniques that will signifi-
cantly improve the global performance of ML-based network manage-
ment frameworks.

5.5. Lack of datasets

ML systems depend on the accessibility to high-quality datasets that
permit the training and validation of developed models. The novelty of
heterogeneous networks implies the lack of available datasets with the
desired characteristics to feed emerging management mechanisms [14,
65]. Moreover, so far in computer communications, exploiting
networking data to develop further enhancements is not an extended
practice. Consequently, there is a huge need for appropriate network
information and statistics collection to enable the correct design and
deployment of ML systems. A promising solution to this challenge is
emerging through the use of GANs, which learn how to generate new
data with the same statistics as a given dataset [109].

5.6. Security

The adoption and spread of ML-based ZSM systems opened a way for
new attack vectors in NGNs [9]. The ML algorithms themselves and their
hosting frameworks can be disrupted in several ways, severely affecting
the network performance. The attacks can affect the data integrity,
thereby altering the information collected by the system, which is later
used in ML decision making. The system availability is another point of
attack by directly striking MLmodules and causing malfunctions. Finally,
data or user privacy can be compromised by the interception of sensitive
information. As usual, security and privacy concerns are fundamental
pillars in developing computer systems and must be carefully examined.

6. Conclusions

This work provided a comprehensive overview of the application of
ML techniques to the management of next-generation network in-
frastructures following a ZSM approach. The most important efforts
devoted by international standardization bodies were examined. In line
with this, foundational ZSM reference architectures were proposed by
ETSI and ITU-T to set the groundwork for more advanced ZSM de-
velopments. Other working groups within ISO/IEC, IEEE, NIST, and OMG
have also been pushing for the development of ML mechanisms for the
automated management and orchestration of resources in NGN. Given
the recent launch of these initiatives, they are currently in their infancy,
and new contributions are expected to in the next months, especially in
the fields of security, management interfaces, cross-domain services, and
transparency and accountability inside ZSM architectures.
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Specific ZSM-related proposals from academia and the industry in the
form of international projects or publications were also discussed in this
paper. From this dissection, we conclude that ZSM is a hot topic gaining
great momentum to further develop and integrate into real NGN de-
ployments. This is evidenced by the number of related ongoing projects
and research proposals exploring the ZSM paradigm from different per-
spectives (e.g., resource orchestration, traffic monitoring, cybersecurity,
etc.). However, the integration of ML-based mechanisms within infra-
structure management systems brings a series of challenges related to
their computation complexity, adaptability, and scalability, which can be
important handicaps for reaching the user-demanded QoE levels. More-
over, given the constant evolution of ML, NGNs, and supported appli-
cations, new architectural designs and innovative virtualization schemes
and management function developments are clearly necessary for
enriching the vibrant and rising ZSM ecosystem in the near future.
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