Por favor, use este identificador para citar o enlazar este ítem: http://dx.doi.org/10.1016/j.nimb.2016.09.026

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorRodríguez-Martínez, F.J.-
dc.contributor.authorCastejón-Mochón, J.F.-
dc.contributor.authorCastrillo, P.-
dc.contributor.authorBerenguer-Vidal, R.-
dc.contributor.authorDopico, I.-
dc.contributor.authorMartín-Bragado, I.-
dc.date.accessioned2025-01-31T09:15:04Z-
dc.date.available2025-01-31T09:15:04Z-
dc.date.issued2016-10-13-
dc.identifier.citationNuclear Instruments and Methods in Physics Research B 393 (2017) 135–139es
dc.identifier.issnElectronic: 1872-9584-
dc.identifier.urihttp://hdl.handle.net/10201/149846-
dc.description© 2016 Elsevier B.V. All rights reserved. This document is the Published Manuscript version of a Published Work that appeared in final form in Nuclear Instruments and Methods in Physics Research B. To access the final edited and published work see http://dx.doi.org/10.1016/j.nimb.2016.09.026es
dc.description.abstractThe structural evolution of FeCr superlattices has been studied using a quasi-atomistic Object Kinetic Monte Carlo model. Superlattices with different spatial periods have been simulated for anneal durations from few hours to several months at 500 C. Relatively-long period superlattices stabilize into Fe-rich and Cr-rich layers with compositions close to those of bulk a and a0 phases. In contrast, superlattices with very short periods (4, 5, 6 nm) are observed to undergo instability and, for long annealing times, evolve into three-dimensionally decomposed regions, in qualitative agreement to recent experimental observations. The instability onset is delayed as the spatial period increases, and it occurs via interface roughness. This evolution can be explained as a minimization of the free-energy associated to the a/a0 interfaces. A comprehensive description of the evolution dynamics of FeCr-based structures is obtained with our modeles
dc.formatapplication/pdfes
dc.format.extent5es
dc.languageenges
dc.publisherElsevieres
dc.relationSin financiación externa a la Universidades
dc.rightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectFeCr alloyses
dc.subjectSuperlatticeses
dc.subjectKinetic Monte Carloes
dc.subjectSpinodales
dc.titleKinetic Monte Carlo simulation of phase-precipitation versus instability behavior in short period FeCr superlatticeses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0168583X16304098?via%3Dihubes
dc.identifier.doihttp://dx.doi.org/10.1016/j.nimb.2016.09.026-
dc.identifier.doiPrint: 0168-583X-
dc.contributor.departmentDidáctica de las Ciencias Matemáticas y Sociales-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2017 Artículo.pdf2,68 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.