Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1007/s00025-022-01661-0


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Huber, Matthieu | - |
dc.contributor.author | Javaloyes Victoria, Miguel Ángel | - |
dc.date.accessioned | 2025-01-30T16:21:24Z | - |
dc.date.available | 2025-01-30T16:21:24Z | - |
dc.date.issued | 2022-04-28 | - |
dc.identifier.citation | Results in Mathematics, 2022, Vol. 77 : 124 | es |
dc.identifier.issn | Print: 1422-6383 | - |
dc.identifier.issn | Electronic: 1420-9012 | - |
dc.identifier.uri | http://hdl.handle.net/10201/149792 | - |
dc.description | © 2022, The Author(s). This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published Manuscript, version of a Published Work that appeared in final form in Results in Mathematics. To access the final edited and published work see https://doi.org/10.1007/s00025-022-01661-0 | - |
dc.description.abstract | The main result of this paper is an expression of the flag curvature of a submanifold of a Randers–Minkowski space (V , F ) in terms of invariants related to its Zermelo data (h, W ). More precisely, these invariants are the sectional curvature and the second fundamental form of the positive definite scalar product h and some projections of the wind W. This expression allows for a promising characterization of submanifolds with scalar flag curvature in terms of Riemannian quantities, which, when a hypersurface is considered, seems quite approachable. As a consequence, we prove that any h-flat hypersurface S has scalar F-flag curvature and the metric of its Zermelo data is conformally flat. As a tool for making the computation, we previously reobtain the Gauss–Codazzi equations of a pseudo-Finsler submanifold using anisotropic calculus. | es |
dc.format | application/pdf | es |
dc.format.extent | 33 | es |
dc.language | eng | es |
dc.publisher | Springer | - |
dc.relation | The second author was supported by the project PGC2018-097046-B-I00, funded by MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa”. | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Finsler metrics | es |
dc.subject | Flag curvature | es |
dc.subject | Randers metrics | es |
dc.subject | Gauss-Codazzi equations | es |
dc.subject | Zermelo navigation | es |
dc.title | The flag curvature of a submanifold of a Randers–Minkowski space in terms of Zermelo data | es |
dc.type | info:eu-repo/semantics/article | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s00025-022-01661-0 | - |
dc.identifier.doi | https://doi.org/10.1007/s00025-022-01661-0 | - |
dc.contributor.department | Matemáticas | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
RiM(HuJa22).pdf | 589,23 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons