Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1007/s00025-022-01661-0

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorHuber, Matthieu-
dc.contributor.authorJavaloyes Victoria, Miguel Ángel-
dc.date.accessioned2025-01-30T16:21:24Z-
dc.date.available2025-01-30T16:21:24Z-
dc.date.issued2022-04-28-
dc.identifier.citationResults in Mathematics, 2022, Vol. 77 : 124es
dc.identifier.issnPrint: 1422-6383-
dc.identifier.issnElectronic: 1420-9012-
dc.identifier.urihttp://hdl.handle.net/10201/149792-
dc.description© 2022, The Author(s). This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published Manuscript, version of a Published Work that appeared in final form in Results in Mathematics. To access the final edited and published work see https://doi.org/10.1007/s00025-022-01661-0-
dc.description.abstractThe main result of this paper is an expression of the flag curvature of a submanifold of a Randers–Minkowski space (V , F ) in terms of invariants related to its Zermelo data (h, W ). More precisely, these invariants are the sectional curvature and the second fundamental form of the positive definite scalar product h and some projections of the wind W. This expression allows for a promising characterization of submanifolds with scalar flag curvature in terms of Riemannian quantities, which, when a hypersurface is considered, seems quite approachable. As a consequence, we prove that any h-flat hypersurface S has scalar F-flag curvature and the metric of its Zermelo data is conformally flat. As a tool for making the computation, we previously reobtain the Gauss–Codazzi equations of a pseudo-Finsler submanifold using anisotropic calculus.es
dc.formatapplication/pdfes
dc.format.extent33es
dc.languageenges
dc.publisherSpringer-
dc.relationThe second author was supported by the project PGC2018-097046-B-I00, funded by MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa”.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFinsler metricses
dc.subjectFlag curvaturees
dc.subjectRanders metricses
dc.subjectGauss-Codazzi equationses
dc.subjectZermelo navigationes
dc.titleThe flag curvature of a submanifold of a Randers–Minkowski space in terms of Zermelo dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00025-022-01661-0-
dc.identifier.doihttps://doi.org/10.1007/s00025-022-01661-0-
dc.contributor.departmentMatemáticas-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
RiM(HuJa22).pdf589,23 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons