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1. Introduction

The theory of submanifolds in Finsler Geometry has a long history beginning
with the work of Haimovici [19] and Wegener [41]. But the complexity of its
computations has slowed down its development compared with the theory of
Riemannian submanifolds. There are several aspects of Finsler submanifolds
that can deserve some attention. The study of minimal submanifolds and mean
curvature was brought up in [36]. As the definition of minimal submanifold
depends on the choice of a volume form, there has been some controversy as
there are several possibilities for this volume form [2,7]. A second aspect that
has attracted the attention of the Finslerian community is the study of the
intrinsic geometry of a submanifold. At this point, the difficulty of making
computations has been a hard obstacle to overcome, but the reward is not less
appealing as one can generate many examples of Finsler manifolds in a natural
way, not to mention possible applications.

The main goal of this paper is to obtain an expression for the flag curva-
ture of a submanifold in a Randers–Minkowski space in terms of its Zermelo
data. Recall that the flag curvature is one of the most important geometric in-
variants of a Finsler manifold. It is a measure of how geodesics get apart when
the initial directions lie in a certain plane. More specifically, the flagpole is the
direction of the initial geodesic, so that the flag curvature depends on a plane
(the flag) and on a direction (the flagpole). On the other hand, a Randers–
Minkowski space is a vector space V endowed with a Randers norm. A Randers
norm F : V → R can be characterized by having as indicatrix Σ = F−1(1) an
ellipsoid which contains the origin in its bounded domain. This ellipsoid de-
termines a positive-definite scalar product h and a vector W ∈ V in the sense
that the ellipsoid coincides with the unit sphere of h up to a translation −W of
its center of mass to the origin. The pair (h,W ) is called the Zermelo data of
the Randers norm as it is related to the problem of Zermelo navigation, which
consists of determining the path that minimizes the travel time for a ship or an
airplane in the presence of a wind. The Zermelo data was used in [5] to classify
Randers manifolds with constant flag curvature. This was very surprising since
the problem of classifying constant flag curvature Randers manifolds appeared
to be very difficult when making the computations in terms of (α, β) as in (31)
rather than in terms of the Zermelo data (h,W ). Recall that a Finsler manifold
is said to be of scalar flag curvature if the flag curvature depends only on the
flagpole and not on the plane containing this flagpole, namely, the flag curva-
ture is a positive homogeneous function of degree zero on the tangent bundle.
The equations characterizing Randers manifolds of scalar flag curvature ob-
tained in [44] turned out to be incomplete [37,38] (see also [4] for a detailed
story). Following in the wake of the pioneering paper [5], we have computed the
flag curvature of an arbitrary submanifold S of a Randers–Minkowski space
(V , F ) using only the geometric invariants of the Zermelo data (h,W ). More
precisely, the flag curvature of (S, F |S), where F |S is the Finsler metric on S
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induced by the Randers–Minkowski norm F , depends on the h-Riemannian
sectional curvature Kh, the second fundamental form II′ (computed with h),
and some h-projections of W (see (62)).

One of the most appealing consequences of our computation of the flag
curvature is that it allows us to give a characterization of submanifolds with
scalar flag curvature in a purely Riemannian way. This leads to a huge family
of examples beginning with the class described in Corollary 19, which claims
that every h-flat hypersurface is of scalar flag curvature for F and the metric
of its Zermelo data is conformally flat. Indeed, the classification of hypersur-
faces of scalar flag curvature seems achievable looking at the condition given
in Corollary 18. The case of arbitrary codimension could be much more dif-
ficult to solve. For example, the classification of submanifolds with constant
sectional curvature of the Euclidean space, which is a particular case of our
general problem putting W = 0, is still an open problem with some partial
results in low codimension [14, Chapter 5]. In any case, the codimension is
very important, since the classification of submanifolds of scalar flag curvature
up to a certain codimension could be of great help to obtain the classification
of Randers manifolds of scalar flag curvature, which has remained as a major
open problem in Finsler Geometry (see [12, §4.3] for a summary of the most
important results and [13,39,40] for some recent results). Recall that there are
several extensions of the Nash embedding theorem for Riemannian manifolds
to the Finslerian realm (see [9,17,18,21] and also the introduction of [36] for
a summary and some counterexamples for smooth and global embeddings).
These extensions claim that a Finsler manifold can be isometrically embedded
in some Minkowski space. Though these theorems do not specify the type of
Minkowski space in which the manifold is embedded, it is quite natural to
think that, if one considers a Randers manifold, the embedding can be made
into a Randers space. If this could be done so much as locally, the classification
of scalar flag curvature submanifolds of a Randers–Minkowski space could lead
to the classification of Randers manifolds of scalar flag curvature.

All the computations have been carried out using the anisotropic calculus
developed in [24,25]. The main contribution of this kind of calculus is that it
allows us to perform all calculations using affine connections on the manifold.
This is done by fixing a vector field V which is an arbitrary extension of the
vector v where we want to make the computation. In this way, one gets an
affine connection ∇V from the given anisotropic connection (see Definition 2
and recall that, roughly speaking, an anisotropic connection is a connection
which has a different value for every direction v). In order to make all the
results independent from the choice of V , it is necessary to add a term that
depends on vertical derivatives (derivatives in the tangent space) and on ∇V

XV
(see (6)). This method allows us to avoid the use of coordinates in all our
computations, giving always tensorial expressions. The first one to use this
family of affine connections was Matthias [34] using a geodesic vector field V
and it was generalized by the second author sucessively in [22–25].
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Let us describe with more detail the structure and results of the paper.
After giving the basic notions of anistropic calculus in §2, the next section is
devoted to obtain a sort of Gauss–Codazzi equations for pseudo-Finsler man-
ifolds. This is a crucial step to study the intrinsic and extrinsic geometry of a
submanifold and it has been achieved several times in literature independently
and with different purposes, methods and connections (see [1,15,16,20,30–
33,35,42] and also [6, Theorem 2.1]). Our deduction of the Gauss–Codazzi
equations will use the anisotropic calculus and the Chern connection (see The-
orem 5). Indeed, we will obtain the Gauss–Codazzi equations not only in terms
of the second fundamental form II, but also in terms of the tensor Q, the dif-
ference between the induced connection ̂∇ and the Chern connection ∇ of the
submanifold S. It turns out that Q depends on the Cartan tensor C and the
second fundamental form II (see Lemma 2). Then we study the properties of Q
(see Lemma 3) to obtain an expression of the flag curvature of a non-degenerate
submanifold (see Corollary 6) from the Gauss equation (20). The properties
of Q are crucial to cancel many terms of (20). We also recover in Corollary 7 a
result by Li [32], which claims that the flag curvature of a totally geodesic sub-
manifold (see §3.3 for definitions and characterizations) coincides with the flag
curvature of the background manifold. With the formula for the flag curvature
of a submanifold at hand, in §4 we obtain an explicit expression of the flag cur-
vature of a submanifold of a Randers–Minkowski space in terms of its Zermelo
data (h,W ) (for previous results on Randers and Kropina submanifolds see [33,
§8] and [6, §3.3], and for the more general class of (α, β)-metrics see [3]). First
we compute the fundamental tensor g (see Lemma 8) and the Cartan tensor
C (see Proposition 9) in terms of the Zermelo data. Then in §4.1, we describe
the Zermelo data of a submanifold (Proposition 10)), the second fundamental
form of S (Lemma 11) and, finally, in Lemma 13, we compute the most difficult
term in the expression of the flag curvature, which depends on ∇Q. With all
this information, we are able to obtain the formula for the flag curvature in
Theorem 14, which is given only in terms of the Zermelo data (h,W ), namely,
the h-sectional curvature Kh of S, its second fundamental form II′ with respect
to h and some h-projections of W . In the case of a hypersurface, the compu-
tation of the second fundamental form becomes easier (see Lemma 16), and
this allows us to give a simpler expression of the flag curvature in (68) and a
characterization of hypersurfaces with scalar flag curvature (see Corollary 18).
This leads us to find the mentioned family of h-flat hypersurfaces with scalar
flag curvature and conformally flat metric of its Zermelo data. We finish the
paper giving an explicit computation of the flag curvature of the indicatrix of
a Randers–Minkowski space in Corollary 20, and making some considerations
about pseudo-Randers–Kropina metrics in the final Remark 21. In particular,
all the results extend to this more general case, including Kropina metrics.
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2. Preliminaries and Notations

Given a manifold M , we will denote by π : TM → M the natural projection
from its tangent bundle TM .

Definition 1. Let M be a manifold, and A ⊂ TM \ {0} be a conic open subset
of TM , namely, if v ∈ A then λv ∈ A for every λ > 0. We say that a smooth
function L : A −→ R is a pseudo-Finsler metric when it satisfies the following
properties:

(i) L(λv) = λ2L(v) for all λ > 0 and v ∈ A,
(ii) the fundamental tensor gv : Tπ(v)M ×Tπ(v)M → R, defined for all v ∈ A

and u,w ∈ Tπ(v)M as

gv(u,w) :=
1
2

∂2

∂s∂t
L(v + su + tw)

∣

∣

∣

s=t=0
, (1)

is non-degenerate.
Furthermore, we define for every u,w, z ∈ Tπ(v)M the Cartan tensor of L as

Cv(u,w, z) :=
1
2

∂

∂t
gv+tz(u,w)

∣

∣

∣

t=0
=

1
4

∂3

∂r∂s∂t
L(v + ru + sw + tz)

∣

∣

∣

r=s=t=0
.

In the following, the space of A-anisotropic tensors of type (r, s) will be
denoted by Tr

s(M,A), while by convention T0
0(M,A) ≡ F(A), where F(A)

denotes the space of smooth real functions on A (see [24] and [25]). One can
think of them as a generalization of classical tensors, in the sense that there
is a multilinear map for every v ∈ A rather than every p ∈ M , namely, the
coordinates of the tensor are functions on an open subset of A. We will denote
by X(M) the space of smooth vector fields on M and by F(M) the space of
smooth real functions on M . Observe that the elements of T1

0(M,A) can be
interpreted as A-anisotropic vector fields, namely, for every v ∈ A we choose
a vector Xv ∈ Tπ(v)M in a smooth way. The subset X(M) can be seen as a
subset of T1

0(M,A), since in the case of a classical vector field X, we can define
Xv := Xπ(v). In many cases, it will be clear what the subset A is, so we wil
speak just about anisotropic tensors.

Definition 2. An A-anisotropic (linear) connection is a map

∇ : A × X(M) × X(M) → TM, (v,X, Y ) �→ ∇v
XY ∈ Tπ(v)M,

such that for any X,Y,Z ∈ X(M), v ∈ A, f, h ∈ F(M),
(i) ∇v

X(Y + Z) = ∇v
XY + ∇v

XZ,
(ii) ∇v

X(fY ) = X(f)Y |π(v) + f(π(v))∇v
XY ,

(iii) ∇XY is an A-anisotropic vector field (as a map A � v �→ ∇v
XY ∈

Tπ(v)M),
(iv) ∇v

fX+hY Z = f(π(v))∇v
XZ + h(π(v))∇v

Y Z.

Given a vector field V on an open subset Ω ⊂ M which is A-admissible,
namely, Vp ∈ A for any p ∈ Ω, and an A-anisotropic tensor T ∈ Tr

s(M,A),
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we will denote by TV ∈ Tr
s(Ω) the classical (r, s)-tensor given at every point

p ∈ Ω by (TV )p := TVp
. We also will define the affine connection ∇V given by

(∇V
XY )p := ∇Vp

X Y for any X,Y ∈ X(Ω). Having at our disposal the anisotropic
connection and a vector field X ∈ X(M), one can define now an anisotropic
tensor derivation ∇X (see [24, §2.2] for details) in the space of anisotropic
tensors Tr

s(M,A). If h ∈ F(A) ≡ T0
0(M,A), then ∇Xh ∈ F(A) is determined

by

(∇Xh) ◦ V = X(h ◦ V ) − (∂νh)V (∇V
XV ), (2)

where V is any A-admissible vector field on Ω ⊂ M which extends v, namely,
Vπ(v) = v and ∂νh is the vertical derivative of h defined as

(∂νh)v(z) =
∂

∂t
h(v + tz)|t=0

for every v ∈ A and z ∈ Tπ(v)M . Moreover, by the chain rule, we deduce the
following formula for the tensor derivative ∇XT of T ∈ T0

s(M,A),

∇XT (X1, . . . , Xs) = ∇X(T (X1, . . . , Xs)) −
r

∑

i=1

T (X1, . . . ,∇XXi, . . . , Xs),

(3)

where X,X1, . . . , Xs ∈ X(Ω). Observe that, by the F(A)-multilinearity, it is
enough to define the anisotropic tensor for classical vector fields since this
determines its value in arbitrary anisotropic vector fields. In addition,

∇X(T (X1, . . . , Xs)) ◦ V = X(TV (X1, . . . , Xs)) − (∂νT )V (X1, . . . , Xs,∇V
XV ),

(4)

where the vertical derivative (∂νT ) is given by

(∂νT )v(Y1, . . . , Ys+1) =
∂

∂t
Tv+tYs+1|π(v)

(Y1, . . . , Ys) (5)

for Y1, . . . , Ys+1 ∈ X(M) (see [25, Eq. (6)]). Putting together (3) and (4), we
obtain a formula for ∇XT using an A-admissible extension V of v,

(∇XT )V (X1, . . . , Xs) = X(TV (X1, . . . , Xs)) − (∂νT )V (X1, . . . , Xs,∇V
XV )

−
s

∑

i=1

TV (X1, . . . ,∇V
XXi, . . . , Xs). (6)

A similar formula can be obtained when one considers an anisotropic tensor
T ∈ T1

s(M,A) as an F(A)-multilinear map T : T1
0(M,A) × . . . × T1

0(M,A) →
T1

0(M,A). Taking into account that X(M) ⊂ T1
0(M,A),

(∇XT )V (X1, . . . , Xs) = ∇V
X(TV (X1, . . . , Xs)) − (∂νT )V (X1, . . . , Xs,∇V

XV )

−
s

∑

i=1

TV (X1, . . . ,∇V
XXi, . . . , Xs), (7)
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where X,X1, . . . , Xs ∈ X(Ω) and ∂νT is defined formally as in (5). Eq. (2)
also allows us to extend the anisotropic derivation to T1

0(M,A) × T1
0(M,A)

(see [25, Remark 2.3]). Then it is possible to define its associated curvature
tensor Rv : X(M) × X(M) × X(M) → Tπ(v)M :

Rv(X,Y )Z = ∇v
X(∇Y Z) − ∇v

Y (∇XZ) − ∇v
[X,Y ]Z, (8)

for any v ∈ A and X,Y,Z ∈ X(M). Moreover, the curvature tensor of ∇ can
be computed using ∇V :

Rv(X,Y )Z = RV
π(v)(X,Y )Z − Pv(Y,Z,∇V

XV ) + Pv(X,Z,∇V
Y V ), (9)

for any v ∈ A, where V,X, Y, Z ∈ X(Ω), being V an A-admissible extension
of v, RV , the curvature tensor of the affine connection ∇V and P the vertical
derivative of ∇, namely,

Pv(X,Y,Z) =
∂

∂t
∇v+tZ|π(v)

X Y

∣

∣

∣

∣

t=0

, (10)

RV (X,Y )Z = ∇V
X∇V

Y Z − ∇V
Y ∇V

XZ − ∇V
[X,Y ]Z. (11)

Observe that P is an A-anisotropic tensor, but RV is not, since it depends on
the extension V . Moreover, for every v ∈ A, it is always possible to choose an
A-admissible extension V of v = V |π(v) on some open subset Ω such that

∇v
XV = 0, (12)

for every X ∈ X(Ω) (see [25, Proposition 2.13]). In the following we will express
this condition as ∇vV = 0.

Definition 3. Given a pseudo-Finsler manifold (M,L), the Levi-Civita-Chern
connection is the unique anisotropic connection ˜∇ that is torsion-free, namely,

˜∇v
XY − ˜∇v

Y X = [X,Y ], ∀X,Y ∈ X(M), v ∈ A (13)

and is compatible with g, namely, ˜∇g = 0. The last condition is equivalent to
the following: for every A-admissible vector field V on an open subset Ω ⊂ M ,
the affine connection ˜∇V on Ω is almost g-compatible:

X(gV (Y,Z)) = gV (˜∇V
XY,Z) + gV (Y, ˜∇V

XZ) + 2CV (˜∇V
XV, Y, Z). (14)

The equivalence follows easily from (6) and the fact that ∂νg = 2C. This leads
to the following anisotropic Koszul formula, by rotation through X,Y,Z:

2gV (˜∇V
XY,Z) = X(gV (Z, Y )) + Y (gV (X,Z)) − Z(gV (X,Y ))

+ gV ([Z,X], Y ) + gV (X, [Z, Y ]) + gV (Z, [X,Y ])

− 2CV (Z, Y, ˜∇V
XV ) − 2CV (X,Z, ˜∇V

Y V ) + 2CV (X,Y, ˜∇V
Z V ).

(15)
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Once we have introduced the Levi-Civita-Chern connection of a pseudo-
Finsler manifold, we can define the flag curvature in an easy way. The flag
curvature turns out to be a very important geometric invariant of Finsler
geometry. It is a measure of how geodesics get apart. This depends on the
initial geodesic, so its direction will be the flagpole v ∈ A. The plane where we
consider the variation of geodesics is determined by the flag u ∈ Tπ(v)M .

Definition 4. The flag curvature ˜Kv of a pseudo-Finsler manifold (M,L) with
flagpole v ∈ A and flag u ∈ Tπ(v)M satisfying that L(v)gv(u, u)−gv(v, u)2 �= 0
is given by

˜Kv(u) =
gv( ˜Rv(v, u)u, v)

L(v)gv(u, u) − g2
v(u, v)

,

where ˜R is the curvature tensor of the Levi-Civita-Chern connection ˜∇ of
(M,L).

Remark 1. The flag curvature can be computed using other anisotropic con-
nections as for example the Berwald one and, more generally, with any distin-
guished connection (see [25, Proposition 3.6]). As we will see later, this not
will be the case of the induced connection of a submanifold.

3. Geometry of Submanifolds in Finsler Spaces

3.1. The Second Fundamental Form and the Induced Connection

Suppose that (M,L) is a pseudo-Finsler manifold and S ⊂ M a non-degenerate
submanifold of M , namely, the restriction of gv into the tangent space Tπ(v)S
is non-degenerate for every v ∈ TS ∩ A. In such a case, gv allows us to obtain
a decomposition of Tπ(v)M in the tangent and gv-orthogonal part to Tπ(v)S,

Tπ(v)M = Tπ(v)S
⊕

(Tπ(v)S)⊥gv .

In the following, we will denote with the superindices 
gv
and ⊥gv

the gv-
projection, respectively, into the tangent and gv-orthogonal part to Tπ(v)S.
Now given v ∈ A with π(v) ∈ S and vector fields X,Y ∈ X(S), it is possible to
define ˜∇v

XY by considering any choice of extensions ˜X ∈ X(M) and ˜Y ∈ X(M)
of X and Y , respectively. Then

˜∇v
XY := ˜∇v

˜X
˜Y

is well-defined, namely, it does not depend on the choice of ˜X and ˜Y . Using
the above decomposition Tπ(v)M = Tπ(v)S

⊕

(Tπ(v)S)⊥gv , one can express

˜∇v
XY = ̂∇v

XY + IIv(X,Y ), (16)

where the tangent part to S, ̂∇v
XY , determines an A ∩ TS-anisotropic con-

nection on S and IIv(X,Y ) determines an anisotropic tensor in the following
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sense: for every v ∈ A ∩ TS, it gives a map

IIv : Tπ(v)S × Tπ(v)S → (Tπ(v)S)⊥gv

which is multilinear. Moreover, IIv is symmetric and ̂∇ is torsion-free, since
˜∇v

XY − ˜∇v
Y X = [X,Y ]

and as the Lie bracket [X,Y ] is tangent to S, it follows that ̂∇v
XY − ̂∇v

Y X =
[X,Y ] and IIv(X,Y ) = IIv(Y,X).

3.2. The Chern Connection of S

Let (M,L) be a pseudo-Finsler manifold and S ⊂ M a non-degenerate sub-
manifold. In the following, we will denote with L|S the restriction L|TS∩A :
TS ∩ A → R. It is easy to check that L|S is a pseudo-Finsler metric on S,
because for every v ∈ TS ∩ A its fundamental tensor is the restriction of gv in
(1) to Tπ(v)S × Tπ(v)S, which is non-degenerate by hypothesis. Let ˜∇ be the
Levi-Civita-Chern connection of (M,L) and ∇ the Levi-Civita-Chern connec-
tion of (S,L|S). Let Q the difference tensor between ̂∇ introduced in (16) and
∇, given for v ∈ A ∩ TS and X,Y ∈ X(S) by

̂∇v
XY = ∇v

XY + Qv(X,Y ). (17)

Observe that Q determines an anisotropic tensor T1
2(S, TS ∩ A) with Q :

T1
0(M,A) × T1

0(M,A) → T1
0(M,A) and one can define its anisotropic tensor

derivative ∇Q following (7). In the next lemma, we will determine this tensor
Q. The study of the relation between the induced and the intrinsic connec-
tions has been worked out to some extent in many of the references cited in
the introduction for Gauss–Codazzi equations. Moreover, in [11], the authors
study specifically the relation between the induced and the Chern connections
without any mention of Gauss–Codazzi equations.

Lemma 2. Let (M,L) be a pseudo-Finsler manifold and S, a non-degenerate
submanifold. For v ∈ A ∩ TS and u,w, z ∈ Tπ(v)S,
(i) Qv(v, v) = 0,
(ii) Qv(u, v) = −(C�

v(IIv(v, v), u))�gv , where if u1, u2, u3 ∈ Tpi(v)M , C�
v is de-

termined by Cv(u1, u2, u3) = gv(C�
v(u1, u2), u3), namely, it is gv-metrically

equivalent to the Cartan tensor C.
(iii) the anisotropic tensor Q is determined by

gv(Qv(u,w), z) = −Cv(Qv(u, v) + IIv(u, v), w, z) − Cv(Qv(w, v)
+IIv(w, v), z, u) + Cv(Qv(z, v) + IIv(z, v), u, w).

(iv) the anisotropic tensor Q is symmetric.
(v) (∂νQ)v(v, v, u) = −2Qv(v, u).

Proof. Part (iii) is obtained directly by substracting the Koszul formulas for
˜∇ and ∇. Parts (i) and (ii) are an immediate consequence of part (iii) as
by homogeneity the value of the Cartan tensor Cv(u,w, z) is zero when one
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of the components coincides with v. Part (iv) follows straightforwardly from
part (iii) and it can also be deduced analogously to the symmetry of II. For
part (v), compute the derivative of Qv+tu(v + tu, v + tu) = 0 (which holds by
part (i)) with respect to t at t = 0. �

Lemma 3. Let (M,L) be a pseudo-Finsler manifold and S a non-degenerate
submanifold. For v ∈ A ∩ TS and u,w, z ∈ Tπ(v)S,
(i) gv(Qv(u, v), v) = gv(Qv(v, u), v) = 0.
(ii) gv(Qv(u,w), v) = −gv(Qv(u, v), w) = −gv(Qv(v, u), w) = Cv(u,w,

IIv(v, v)).
(iii) The anisotropic tensor ∂νQ is symmetric in the first two components and

gv((∂νQ)v(u, v, w), v) = gv((∂νQ)v(v, u, w), v) = 0.

(iv) (∇wQ)v is symmetric and

gv((∇wQ)v(u, v), v) = gv((∇wQ)v(v, u), v) = 0.

Proof. Parts (i) and (ii) follow from part (iii) of Lemma 2, taking into account
the properties of the Cartan tensor. The symmetry of ∂νQ in the first compo-
nents follows from the symmetry of Q and the definition of vertical derivative.
To prove that gv((∂νQ)v(u, v, w), v) = 0, observe that
∂

∂t
gv+tw(Qv+tw(u, v + tw), v + tw)

∣

∣

∣

t=0
= 2Cv(Qv(u, v), v, w)

+ gv((∂νQ)v(u, v, w), v)

+ gv(Qv(u,w), v) + gv(Qv(u, v), w)

and the left hand side is zero by part (i). The first term to the right hand side
is zero by the properties of the Cartan tensor and the third and fourth terms
cancel by part (ii), which gives the nullity of the first term in part (iii). The
nullity of the second term, gv((∂νQ)v(v, u, w), v) = 0, follows now from the
nullity of the first one and the mentioned symmetry of ∂νQ. The symmetry
of (∇wQ)v follows from the symmetry of Q, the symmetry of ∂νQ in the first
two components and (7). To prove that gv((∇wQ)v(u, v), v) = 0 in part (iii),
choose extensions V,U of v, u such that ∇vV = 0 (recall (12)). Then using
(14) and (7), we have

w(gV (QV (U, V ), V )) = gv((∇v
wQv)(u, v), v) + gv(Qv(∇v

wU, v), v),

where we have discarded all the terms in ∇vV , since it is zero by hypothesis.
Part (i) implies that the left hand side and the second term of the right hand
side are zero, so the identity reduces to gv((∇v

wQv)(u, v), v) = 0 as required.
The other identity gv((∇v

wQv)(v, u), v) = 0 follows from the last one using the
symmetry of (∇wQ)v. �

Let us define the derivative ∇II of the second fundamental form II of S.
If X,Y,Z ∈ X(S) and v ∈ A ∩ TS, we define

(∇XII)v(Y,Z) := (˜∇v
X(II(Y,Z)))⊥gv − IIv(∇v

XY,Z) − IIv(Y,∇v
XZ). (18)
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This determines a map (∇XII)v : X(S) × X(S) → (Tπ(v)S)⊥gv which is F(S)-
multilinear. Observe that ˜∇v

X(II(Y,Z)) is well-defined as it can be computed as
a covariant derivative along an integral curve of X (see [25, §2.2]). Moreover,
v �→ IIv(X,Y ) is an anisotropic vector field. Indeed, it is well-defined for all
v ∈ A with π(v) ∈ S and not only for those v ∈ A ∩ TS. Its derivative is
computed using an A-admissible extension V of v as

˜∇v
X(II(Y,Z)) = ˜∇v

X(IIV (Y,Z)) − (∂νII)v(Y,Z, ˜∇v
XV ), (19)

see [25, Eqs. (8) and (9)]. Observe that the last term is well defined even
though ˜∇v

XV is not necessarily tangent to S as we have defined IIv for all v in
π−1(S).

3.3. Totally Geodesic Submanifolds

A very important class of submanifolds is made up of those whose geodesics
are also geodesics of the background manifold.

Definition 5. Let (M,L) be a pseudo-Finsler manifold and S a non-degenerate
submanifold of (M,L). We will say that S is totally geodesic if the geodesics
of (S,L|S) are also geodesics of (M,L).

Observe that in [30], the author calls this familiy “weakly totally geo-
desic”, saving the term “totally geodesic” for the family with second funda-
mental form II = 0. As the meaning of having a second fundamental form null
everywhere is not clear to us, we prefer to use totally geodesic for the family
introduced above.

Proposition 4. A non-degenerate submanifold S of a pseudo-Finsler manifold
(M,L) is totally geodesic if and only if one of the following two equivalent
conditions holds:
(i) IIv(v, v) = 0 for all v ∈ A ∩ TS.
(ii) IIv(v, u) = 0 for all v ∈ A ∩ TS and u ∈ Tπ(v)S.
In this case, Q = 0.

Proof. First of all observe that given v0 ∈ A ∩ TS, we can choose a geodesic
vector field V of (S,L|S) in some open subset Ω of S which extends v0. Then
by (16) and (17), and using that V is a geodesic vector field of (S,L|S) and
part (i) of Lemma 3,

˜∇V
V V = ∇V

V V + QV (V, V ) + IIV (V, V ) = IIV (V, V ),

which easily implies that the geodesic γv0 of (S,L|S) with initial velocity v0

is also a geodesic of (M,L) if and only if IIv(v, v) = 0 for all v tangent to the
geodesic γv0 . This implies straightforwardly that S is totally geodesic if and
only if part (i) holds. Let us prove that (i) implies (ii) (the converse is trivial).
Observe that deriving IIv+tu(v + tu, v + tu) = 0 with respect to t, it follows
that

(∂νII)v(v, v, u) = −2IIv(v, u).
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To conclude, we only have to prove that (∂νII)v(v, v, u) = 0. Again from (16)
and (17), we have

˜∇v
XY = ∇v

XY + Qv(X,Y ) + IIv(X,Y ),

for vector fields X,Y ∈ X(S) and v ∈ A∩TS. Computing the vertical derivative
of the above identity follows that

˜Pv(u,w, z) = Pv(u,w, z) + (∂νQ)v(u,w, z) + (∂νII)v(u,w, z)

for v ∈ TS∩A and u,w, z ∈ Tπ(v)S, and observing that ˜Pv(v, v, u) = Pv(v, v, u)
= 0 (see for example [25, Lemma 3.5]), and (∂νQ)v(v, v, u) = 0 by parts (ii)
and (v) of Lemma 2, we conclude that (∂νII)v(v, v, u) = 0 as required. The last
statement about Q follows from part (ii) and (iii) of Lemma 2. �

Observe that the equivalence between parts (i) and (ii) in the last propo-
sition can be also found in the proof of Theorem 4.4 in [30].

3.4. The Gauss and Codazzi Equations

Considering a non-degenerate submanifold S of a pseudo-Finsler manifold
(M,L) as in the previous section, recall that ∇ is the Levi-Civita-Chern con-
nection of (S,L|S), ˜∇ is the Levi-Civita-Chern connection of (M,L) and ̂∇ is
the induced connection by ˜∇ on S (see (16)). We will denote by R, ˜R and ̂R

the curvature tensors of ∇, ˜∇ and ̂∇, repectively (see (8)). Moreover, P and
˜P are the vertical derivatives of ∇ and ˜∇, respectively (see (10)), Q is the
difference tensor of ̂∇ and ∇ (see (17)), II the second fundamental form of S
(see (16)) and ∇II is the derivative of the second fundamental form as defined
in (18).

Theorem 5. With the above notation, if (M,L) is a pseudo-Finsler manifold
and S ⊂ M a non-degenerate submanifold, for v ∈ A ∩ TS, u,w, z, b ∈ Tπ(v)S

and n ∈ (Tπ(v)S)⊥gv ,

gv

(

˜Rv(u, w)z, b
)

= gv(Rv(u, w)z, b)

− gv (IIv(w, z), IIv(u, b)) + gv (IIv(u, z), IIv(w, b))

− 2Cv(IIv(u, v), IIv(w, z), b) + 2Cv(IIv(w, v), IIv(u, z), b)

+ gv

(

˜Pv(u, z, IIv(w, v)) − ˜Pv(w, z, IIv(u, v)), b
)

+ gv (Pv(u, z, Qv(w, v)) − Pv(w, z, Qv(u, v)), b)

+ gv ((∇uQ)v(w, z) − (∇wQ)v(u, z), b)

+ gv ((∂νQ)v(u, z, Qv(w, v)) − (∂νQ)v(w, z, Qv(u, v)), b)

+ gv (Qv(u, Qv(w, z)) − Qv(w, Qv(u, z)), b) , (20)

gv

(

˜Rv(u, w)z, n
)

= gv ((∇uII)v(w, z), n) − gv ((∇wII)v(u, z), n)

+ gv(IIv(u, Qv(w, z)), n) − gv(IIv(w, Qv(u, z)), n)
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+ gv((∂νII)v(w, z, IIv(u, v)), n) − gv((∂νII)v(u, z, IIv(w, v)), n)

+ gv

(

˜Pv(u, z, IIv(w, v)), n
)

− gv

(

˜Pv(w, z, IIv(u, v)), n
)

.

(21)

Proof. Let X,Y and Z be vector fields tangent to S which are extensions
of u,w, z, respectively, and such that [X,Y ] = [X,Z] = [Y,Z] = 0, and let
V be an A-admissible extension of v (in a neighborhood of π(v)) such that
̂∇vV = 0 (recall (12)). It follows that ˜∇vV = IIv(·, V ). Taking into account
the last identity, let us compute ˜Rv using the affine connection ˜∇V (see (9)):

˜Rv(X,Y )Z = ˜RV (X,Y )Z|π(v) − ˜Pv(Y,Z, IIV (X,V )) + ˜Pv(X,Z, IIV (Y, V ))

= ˜∇v
X

˜∇V
Y Z − ˜∇v

Y
˜∇V

XZ − ˜Pv(Y,Z, IIV (X,V )) + ˜Pv(X,Z, IIV (Y, V )).
(22)

Then, by (16), we have

˜∇v
X

˜∇V
Y Z = ˜∇v

X
̂∇V

Y Z + ˜∇v
X(IIV (Y,Z)) = ̂∇v

X
̂∇V

Y Z

+IIv(X, ̂∇V
Y Z) + ˜∇v

X(IIV (Y,Z))

and analogously ˜∇v
Y

˜∇V
XZ = ̂∇v

Y
̂∇V

XZ + IIv(Y, ̂∇V
XZ) + ˜∇v

Y (IIV (X,Z)). Com-
bining these identities with

̂RV (X,Y )Z|π(v) = ̂∇v
X

̂∇V
Y Z − ̂∇v

Y
̂∇V

XZ = ̂Rv(X,Y )Z,

(for the last identity recall that ̂∇vV = 0) gives us:

˜RV (X,Y )Z|π(v) = ̂Rv(X,Y )Z + IIv(X, ̂∇V
Y Z) + ˜∇v

X(IIV (Y,Z))

−IIv(Y, ̂∇V
XZ) − ˜∇v

Y (IIV (X,Z)). (23)

Let B be an extension of b tangent to S. By (14) and as gV (IIV (Y,Z), B) = 0
along S, we have

gv

(

˜∇V
X(IIV (Y, Z)), B

)

= −gv(IIV (Y, Z), ˜∇V
XB) − 2Cv(˜∇V

XV, IIV (Y, Z), B)

= −gv (IIV (Y, Z), IIV (X, B)) − 2Cv(IIV (X, V ), IIV (Y, Z), B).
(24)

Similarly,

gv

(

˜∇V
Y (IIV (X,Z)), B

)

= −gv (IIV (X,Z), IIV (Y,B))

− 2Cv(IIV (Y, V ), IIV (X,Z), B). (25)

Putting together (22), (23), (24) and (25) and taking into account the expres-
sion of ̂R in terms of R and Q in [25, Prop. 2.16] gives us (20). In order to
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obtain (21), by (18) and (19),

gv(˜∇V
X(IIV (Y,Z)), n) = gv((∇v

X(II(Y,Z)))⊥gv , n) + gv((∂νII)v(Y,Z, ˜∇v
XV ), n)

= gv((∇XII)v(Y,Z), n) + gv(IIv(∇v
XY,Z), n)

+ gv(IIv(Y,∇v
XZ), n) + gv((∂νII)v(Y,Z, ˜∇v

XV ), n)
(26)

and analogously

gv(˜∇V
Y (IIV (X,Z)), n) = gv((∇Y II)v(X,Z), n) + gv(IIv(∇v

Y X,Z), n)

+ gv(IIv(X,∇v
Y Z), n) + gv((∂νII)v(X,Z, ˜∇v

Y V ), n)
(27)

From (22), (23), (26), (27) and recalling that the Lie brackets of X,Y,Z are
assumed to be zero,∇ is torsion-free and ˜∇v

· V = IIv(·, V ), we conclude (21).
�

Corollary 6. Let (M,L) be a pseudo-Finsler manifold and S a non-degenerate
submanifold. Then the flag curvature of (S,L|S) with flagpole v ∈ A ∩ TS and
flag u ∈ Tπ(v)S with L(v)gv(u, u) − gv(v, u)2 �= 0 is given by

Kv(u) = ˜Kv(u) +
gv(IIv(u, u), IIv(v, v)) − gv(IIv(v, u), IIv(v, u))

L(v)gv(u, u) − gv(v, u)2

+
gv( ˜Pv(u, u, IIv(v, v)) − (∇vQ)v(u, u), v) + Cv(u,Qv(v, u), IIv(v, v))

L(v)gv(u, u) − gv(v, u)2
.

(28)

Proof. By (20), we have

gv

(

˜Rv(v, u)u, v
)

= gv(Rv(v, u)u, v) − gv (IIv(u, u), IIv(v, v))

+ gv (IIv(v, u), IIv(u, v))

− 2Cv(IIv(v, v), IIv(u, u), v) + 2Cv(IIv(u, v), IIv(v, u), v)

+ gv

(

˜Pv(v, u, IIv(u, v)) − ˜Pv(u, u, IIv(v, v)), v
)

+ gv (Pv(v, u,Qv(u, v)) − Pv(u, u,Qv(v, v)), v)

+ gv ((∇uQ)v(u, u) − (∇wQ)v(v, u), v)

+ gv ((∂νQ)v(v, u,Qv(u, v)) − (∂νQ)v(u, u,Qv(v, v)), v)

+ gv (Qv(v,Qv(u, u)) − Qv(u,Qv(v, u)), v) . (29)

In the last identity many terms are zero. The terms in Cv are zero because of
the properties of Cartan tensor, the first term in ˜Pv and the first term in Pv are
both zero by [25, Eq. (56)] since ˜∇ and ∇ are the Levi-Civita-Chern connec-
tions of (M,L) and (S,L|S), respectively. All the terms in Q are zero by Lemma
3 except two, namely, gv ((∇uQ)v(u, u), v) and −gv (Qv(u,Qv(v, u)), v). The
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last term coincides with −Cv(u,Qv(v, u), IIv(v, v)) by part (ii) of Lemma 3.
Putting all this together, (29) becomes

gv

(

˜Rv(v, u)u, v
)

= gv(Rv(v, u)u, v) − gv (IIv(u, u), IIv(v, v))

+ gv (IIv(v, u), IIv(u, v))

+ gv

(

− ˜Pv(u, u, IIv(v, v)) + (∇uQ)v(u, u), v
)

− Cv(u,Qv(v, u), v),

which by the definition of flag curvature leads to (28). �
With this expression of the flag curvature, we can reobtain [30, Theorem

4.4].

Corollary 7. When S is totally geodesic, its flag curvature coincides with the
one of the background manifold.

Proof. Being S totally geodesic, by Proposition 4 we know that IIv(v, u) = 0
for all v ∈ TS ∩ A and u ∈ Tπ(v)S and Q = 0, so the statement follows from
(28). �

4. Randers–Minkowski Spaces

Let V be a vector space of dimension n and recall that a Minkowski norm on
V is a non-negative function F : V → [0,+∞) smooth away from 0, which
is positive homogeneous of degree 1 and such that, for every v ∈ V \ {0},
its fundamental tensor gv, defined as in (1) for L = F 2, is positive definite.
We will say that the pair (V , F ) is a Minkowski space. Let h : V × V → R

be a positive definite scalar product on V . If W ∈ V is a vector such that
h(W,W ) < 1, then we can translate the indicatrix of h with W . It turns out
that the translated hypersurface as it is strongly convex and it contains the
origin of V is the indicatrix of a Minkowski norm F (see [26, Theorem 2.14]).
The Minkowski norm F is determined by the property

h(v/F (v) − W, v/F (v) − W ) = 1,

which is equivalent to a second degree polynomial equation in F (v) and it
implies that

F (v) =
1

�(W )

(

−h(v,W ) +
√

h(v,W )2 + �(W )h(v, v)
)

, (30)

where �(W ) = 1−h(W,W ). This family of Minkowski norms has been used to
solve the Zermelo problem of navigation when the wind does not depend on
time1 [5,38]. Moreover, it coincides with the family of Randers norms, which
are constructed as follows. Given a positive definite scalar product g on V and

1When the wind is time-depending, the Zermelo problem can be studied using Finsler space-
times (see [28, §6.3.1]).
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a one-form β with g-norm less than one, then the function R : V → R given
by

R(v) = α(v) + β(v) (31)

for v ∈ V , where α(v) =
√

g(v, v), is a Minkowski norm which is said to
be of Randers type. It is clear that a Zermelo norm as in (30) is of Randers
type. The converse is also true (see [5, §1.3]). Indeed, if β(v) = g(v,B), then
the Zermelo data of R is given by h(u,w) = �(B)(g(u,w) − g(u,B)g(w,B)),
where �(B) = 1 − g(B,B), and W = −B/�(B) (see also [8, Prop. 3.1]). In
the following, we will say (h,W ) is the Zermelo data of the Randers norm R.
Moreover, if F is a Minkowski norm on V of Zermelo-Randers type, we will
say the pair (V , F ) is a Randers–Minkowski space.

From now on, given a Randers norm F , we will denote by g and C the
fundamental and the Cartan tensors of L = F 2, respectively, and by Σ = {v ∈
V : F (v) = 1}, the indicatrix of F .

Lemma 8. Let F be a Randers norm on V with Zermelo data (h,W ). Given
v ∈ V \ {0}, define

φ(v) = h(v/F (v) − W, v/F (v)). (32)

Then
(i) gv(v/F (v), ·) = 1

φ(v)h(v/F (v)−W, ·). Moreover, Tv/F (v)Σ is the gv-ortho-
gonal space to v and the h-orthogonal space to v/F (v) − W .

(ii) gv = 1
φ(v)h on Tv/F (v)Σ × Tv/F (v)Σ,

(iii) gv(v/F (v),W ) = φ(v)−1
φ(v) .

Furthermore, if u ∈ Tv/F (v)Σ (or equivalently gv(v, u) = 0), then

h(v, u) = φ(v)2F (v)gv(u,W ). (33)

Proof. To check (i), observe that gv(v/F (v), ·) and h(v/F (v) − W, ·) are two
one-forms on V with the same kernel. Namely, the kernel of gv(v/F (v), ·) is
the tangent space to the indicatrix of F as dvF 2 = 2gv(v, ·), and the indicatrix
of F is the unit sphere of h translated with W at v/F (v), while the kernel of
h(v/F (v) − W, ·) is the tangent space at v/F (v) − W to the unit sphere of h.
We know then that gv( v

F (v) , ·) = μ(v)h(v/F (v) − W, ·) for a certain function
μ : V → R. It follows that gv(v/F (v), v) = μ(v)h(v/F (v) − W, v) and as
gv(v/F (v), v) = F (v), we conclude that μ(v) = 1

φ(v) , where φ is defined in
(32). The last statement of part (i) is now straightforward.

For (ii), recall that gv|Tv/F (v)Σ×Tv/F (v)Σ is the second fundamental form
of Σ at v

F (v) with respect to − v
F (v) (see for example [26, Eq. (2.5)]) and

h|Tv/F (v)Σ×Tv/F (v)Σ is the second fundamental form of Σ at v/F (v) with re-
spect to −v/F (v) + W , which is an h-unit vector (recall that, by part (i),
−v/F (v) + W is h-orthogonal to Tv/F (v)Σ). If ˜∇ is the natural affine connec-
tion of V and u,w ∈ Tv/F (v)Σ, then the second fundamental form σξ with
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respect to the transverse vector ξ is defined as follows. Let X,Y be two vector
fields which are extensions of u,w, respectively. Then the identity

(˜∇XY )v/F (v) = σ(u,w)ξ + Pσ

with Pσ tangent to Tv/F (v)Σ determines σ by the uniqueness of the decompo-
sition. In the case of gv|Tv/F (v)Σ×Tv/F (v)Σ and h|Tv/F (v)Σ×Tv/F (v)Σ, this implies
that

gv(u,w)
(

− v

F (v)

)

+ Pg = h(u,w)
(

− v

F (v)
+ W

)

+ Ph (34)

with Pg and Ph tangent to Tv/F (v)Σ. Moreover, as −v/F (v)+W is h-orthogonal
to Tv/F (v)Σ by part (i), −v/F (v) = φ(v)(−v/F (v) + W ) + P , with P tangent
to Tv/F (v)Σ, which implies that

gv(u,w)
(

− v
F (v)

)

+ Pg = gv(u,w) (φ(v)(−v/F (v) + W ) + P ) + Pg

= φ(v)gv(u,w)
(

− v
F (v) + W

)

+ gv(u,w)P + Pg.

By the uniqueness of the decomposition and (34), the identity h(u,w) =
φ(v)gv(u,w) follows, which is equivalent to part (ii).

For (iii), observe that, by part (i), gv(v/F (v),W ) = 1
φ(v)h(v/F (v) −

W,W ). As h(v/F (v) − W, v/F (v) − W ) = 1, the conclusion follows.
Finally, for (33), recall that, by part (i), being gv-orthogonal to v is

equivalent to being h-orthogonal to v/F (v) − W , namely, the vector space
Tv/F (v)Σ coincides with the h-orthogonal vectors to v/F (v)−W . As h(v/F (v)−
W, v/F (v) − W ) = 1, using part (ii), it follows that

h(v, u) = h(v − h(v/F (v) − W, v)(v/F (v) − W ), u)

= φ(v)gv(v − F (v)φ(v)(v/F (v) − W ), u)

= −φ(v)2F (v)gv(v/F (v) − W,u) = φ(v)2F (v)gv(W,u).

�
Proposition 9. Let F : V → R be a Randers norm with Zermelo data (h,W ).
Then for v ∈ V \ {0} and u,w, z ∈ Tv/F (v)Σ,

Cv(u,w, z) = − 1
2φ(v)2F (v)2

(h(u,w)h(z, v) + h(w, z)h(u, v) + h(z, u)h(w, v)).

Proof. Recall that Cv(u,w, z) = 1
2

∂
∂tgv+tz(u,w)|t=0. To apply Lemma 8, let

us define

ϕt(u) = u − gv+tz(u, (v + tz)/F (v + tz))
v + tz

F (v + tz)
, (35)

and observe that ϕt(u) ∈ T(v+tz)/F (v+tz)Σ for all t ∈ R. Moreover, using that
dvF 2 = 2gv(v, ·),

∂

∂t
F (v + tz)|t=0 =

1
2F (v)

dF 2
v (z) =

1
F (v)

gv(v, z) = 0, (36)
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and using the above identity,
∂

∂t
gv+tz(u, (v + tz)/F (v + tz))|t=0 = 2Cv(u, v/F (v), z) + gv(u, z/F (v))

=
1

F (v)
gv(u, z). (37)

On the other hand, using again (36),

∂

∂t
φ(v + tz)|t=0 = h( z

F (v) ,
v

F (v) ) + h( v
F (v) − W, z

F (v) ) = 1
F (v)2 h(z, v), (38)

because z is h-orthogonal to v
F (v) − W (recall part (i) of Lemma 8). Finally,

from (36) and (37) and part (ii) of Lemma 8,

∂

∂t
ϕt(u)|t=0 = − 1

F (v)2
gv(u, z)v = − 1

φ(v)F (v)2
h(u, z)v. (39)

Analogously,
∂

∂t
ϕt(w)|t=0 = − 1

φ(v)F (v)2
h(w, z)v. (40)

Let us compute the Cartan tensor, taking into account (35),

Cv(u, w, z) =
1

2

∂

∂t
gv+tz(u, w)|t=0

=
1

2

∂

∂t
gv+tz(ϕt(u), ϕt(w))|t=0

+
1

2

∂

∂t
gv+tz(u, (v + tz)/F (v + tz))gv+tz(w, (v + tz)/F (v + tz)))|t=0.

Observe that the second term is the derivative of a product of two functions
which are zero in t = 0. Then its value is zero in t = 0. As a consequence, and
using part (ii) of Lemma (8), and then (38), (39) and (40),

Cv(u,w, z) =
1
2

∂

∂t
gv+tz(ϕt(u), ϕt(w))|t=0 =

1
2

∂

∂t

1
φ(v + tz)

h(ϕt(u), ϕt(w))|t=0

= − 1
2φ(v)2F (v)2

h(z, v)h(u,w) − 1
2φ(v)2F (v)2

h(u, z)h(v, w)

− 1
2φ(v)2F (v)2

h(w, z)h(v, u),

as desired. �

4.1. Submanifolds of a Randers–Minkowski Space

In this section, we will consider a submanifold S of a Randers–Minkowski space
(V , F ) with Zermelo data (h,W ). Our main goal is to express all the Randers
geometric invariants of S in terms of the invariants with respect to h. Let
us begin by obtaining the Zermelo data of the induced metric on S. We will
denote by F |S the restriction F |TS : TS → R, which is a Finsler metric on
S, namely, F |2S is a pseudo-Finsler metric defined in the whole tangent bundle
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and with positive definite fundamental tensor. It is well-known that the Levi-
Civita-Chern connection of (V , F ) coincides with the Levi-Civita connection
of (V , h). Indeed, this is true for any Minkowski norm F , not necessarily
of Randers type. In the following, we will use the superindices 
p and ⊥p

to denote the h-projection to TpS and its h-orthogonal space, respectively.
Moreover, W� will denote a tangent vector field to S such that (W�)p = W�p

and W⊥ will denote an h-orthogonal vector field along S with an analogous
convention.

Proposition 10. Let (V , F ) be a Randers–Minkowski space with Zermelo data
(h,W ), and S ⊂ V , a submanifold. Then the Zermelo data of (S, F |S) is given
by ( 1

1−h(W ⊥,W ⊥)
h,W�).

Proof. Given v ∈ TS\0, we know that F (v) is determined by h( v
F (v)−W, v

F (v)−
W ) = 1. As W is not necessarily tangent to S, the last identity does not allow
us to obtain the Zermelo data of (S, F |S). Recall that W = W�π(v) + W⊥π(v)

is the decomposition in the tangent and h-orthogonal part to Tπ(v)S. Then

h( v
F (v) − W�π(v) , v

F (v) − W�π(v)) + h(W⊥π(v) ,W⊥π(v)) = 1,

which implies that
1

1 − h(W⊥π(v) ,W⊥π(v))
h( v

F (v) − W�π(v) , v
F (v) − W�π(v)) = 1,

namely, the indicatrix of the induced metric F |S is the displacement of the
indicatrix of 1

1−h(W
⊥π(v) ,W

⊥π(v) )
h with W�π(v) . This is equivalent to having as

Zermelo data ( 1
1−h(W ⊥,W ⊥)

h,W�). �

In the following, given v ∈ V \ {0}, we will denote by W�v

S∩Σ the h-
projection of W into Tπ(v)S ∩ Tv/F (v)Σ.

Lemma 11. Let (V , F ) be a Randers–Minkowski space with Zermelo data
(h,W ), and S ⊂ V , a submanifold. If II′ is the second fundamental form
with respect to h, its second fundamental form II with respect to F (defined in
(16)) is given by

IIv(u,w) = II′(u,w) +
1

φ(v)
h(II′(u,w),W )

(

v
F (v) − W�v

S∩Σ

)

, (41)

for v ∈ V \ {0} and u,w ∈ Tπ(v)S.

Proof. Let X,Y ∈ X(S) be extensions of u,w ∈ Tπ(v)S, respectively, and
observe that IIv(u,w) = (∇̃v

XY )⊥gv = (II′(u,w))⊥gv = II′(u,w) − II′(u,w)�gv .
Let { v

F (v) , e2, e2, . . . , er} be a gv-orthonormal basis of Tπ(v)S. In such a case
e2, . . . , er ∈ T v

F (v)
Σ. Then

II′(u,w)�gv = gv(II′(u,w), v
F (v) )

v
F (v) +

r
∑

i=2

gv(II′(u,w), ei)ei. (42)
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From part (i) of Lemma 8 and using that II′(u,w) is h-orthogonal to Tπ(v)S,

gv(II′(u,w), v
F (v) ) = 1

φ(v)h(II′(u,w), v
F (v) − W ) = − 1

φ(v)h(II′(u,w),W ). (43)

Now observing that II′(u,w) + h(II′(u,w),W )(v/F (v) − W ) is tangent to
Tv/F (v)Σ because it is h-orthogonal to v/F (v)−W (recall part (i) of Lemma 8),
and using part (ii) of Lemma 8, it follows that

gv(II′(u,w), ei) = gv(II′(u,w) + h(II′(u,w),W )(v/F (v) − W ), ei)

− h(II′(u,w),W )gv(v/F (v) − W, ei)

=
1

φ(v)
h(II′(u,w) + h(II′(u,w),W )(v/F (v) − W ), ei)

+ h(II′(u,w),W )gv(W, ei).

Moreover, II′(u,w) is h-orthogonal to Tπ(v)S, by definition and v/F (v) − W
is h-orthogonal to Tv/F (v)Σ. Therefore, both vectors are h-orthogonal to ei,
and then using also (33) and the fact that h(v/F (v), ei) = h(W, ei) (because
v/F (v) − W is h-orthogonal to ei),

gv(II′(u,w), ei) = h(II′(u,w),W )gv(W, ei) =
1

F (v)φ(v)2
h(II′(u,w),W )h(v, ei)

=
1

φ(v)2
h(II′(u,w),W )h(W, ei).

(44)

Using (43) and (44) in (42), and taking into account that e2, . . . , er is an h-
orthogonal basis of Tv/F (v)Σ ∩ Tπ(v)S, with h(ei, ei) = φ(v) (recall part (ii) of
Lemma 8), we obtain

II′(u,w)�gv = − 1
φ(v)h(II′(u,w),W ) v

F (v) +
r

∑

i=2

1
φ(v)2

h(II′(u,w),W )h(W, ei)ei

= − 1
φ(v)h(II′(u,w),W )( v

F (v) − W�v

S∩Σ).

As we have seen above that IIv(u,w) = II′(u,w) − II′(u,w)�gv , (41) follows.
�

Lemma 12. Let (V , F ) be a Randers–Minkowski space with Zermelo data
(h,W ), and S ⊂ V , a submanifold. Given v ∈ V \ {0} and u ∈ Tπ(v)S such
that gv(u, v) = 0, if IIv is the second fundamental form of (S, F |S) with respect
to v and Q is the difference tensor between the induced and Levi-Civita-Chern
connection of S, then

Cv(u, u, IIv(v, v)) = − 1
2F (v)2φ(v)

gv(u, u)h(IIv(v, v), v), (45)

Cv(u,Qv(u, v), IIv(v, v)) = − 1
4F (v)4φ(v)2

gv(u, u)h(IIv(v, v), v)2. (46)
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Proof. Observe that by definition of IIv, gv(v, IIv(v, v)) = gv(u, IIv(v, v)) = 0.
Then by part (ii) of Lemma 8, h(u, IIv(v, v)) = 0 and as a consequence, from
Proposition 9,

Cv(u, u, IIv(v, v)) = − 1
2F (v)2φ(v)2

h(u, u)h(IIv(v, v), v).

Using again part (ii) of Lemma 8 to obtain that h(u, u) = φ(v)gv(u, u), we
conclude (45).

Noting that gv(Qv(u, v), v) = 0 by part (i) of Lemma 3, we can apply
again Proposition 9. Moreover, gv(Qv(u, v), IIv(v, v)) = 0 and by part (ii) of
Lemma 8, h(Qv(u, v), IIv(v, v)) = 0. As we have seen above that h(u, IIv(v, v)) =
0, from Proposition 9,

Cv(u,Qv(u, v), IIv(v, v)) = − 1
2F (v)2φ(v)2

h(u,Qv(u, v))h(IIv(v, v), v). (47)

Finally, applying part (ii) of Lemma 8 and part (ii) of Lemma 3,

h(u,Qv(u, v)) = φ(v)gv(u,Qv(u, v)) = −φ(v)Cv(u, u, IIv(v, v)).

Taking into account (45) and then substituting in (47), we obtain (46). �

4.2. Flag Curvature

We are ready to compute the flag curvature of a submanifold using (28). We
will need the derivative of the connection II′.

Definition 6. Let (V , F ) be a Randers–Minkowski space with Zermelo data
(h,W ) and S, a submanifold of V . Denote by II′ the second fundamental form
with respect to h of S, and by ∇̄, the induced connection on S (computed
using h). Given X,Y,Z ∈ X(S), let us define ∇̄II′ as follows

(∇̄XII′)(Y,Z) = (˜∇X(II′(Y,Z)))⊥ − II′(∇̄XY,Z) − II′(Y, ∇̄XZ). (48)

Lemma 13. Let (V , F ) be a Randers–Minkowski space with Zermelo data (h,W )
and S, a submanifold of V . For v ∈ V \ {0} and u ∈ Tπ(v)S such that
gv(v, u) = 0,

gv((∇vQ)v(u, u), v)

= − gv(u, u)
2F (v)φ(v)2

∣

∣

∣

v
F (v) − W�v

S∩Σ

∣

∣

∣

2

h

[

h((∇̄vII′)(v, v),W )

− h(II′(v, v), II′(v,W�π(v))) − 4
φ(v)

h(II′(v, v),W )h(II′(v,W�v

S∩Σ),W )

+ 1
φ(v)2F (v)h(II′(v, v),W )2(4φ(v) − 2

∣

∣

∣

v
F (v) − W�v

S∩Σ

∣

∣

∣

2

h
)
]

. (49)

Proof. Recall that it is possible to choose a local extension V of v such that
∇vV = 0 (see (12)). Then we can also choose a local extension U of u such that
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[U, V ] = 0. In such a case, we also have that ∇v
V U = ∇v

UV + [U, V ]|π(v) = 0.
Using that ∇v

vV = ∇v
vU = 0, Lemma 3 and (45), it follows that

gv((∇vQ)v(u, u), v) = v(gV (QV (U,U), V )) = v(CV (U,U, IIV (V, V )))

= −v

(

1
2(F ◦ V )2φ ◦ V

gV (U,U)h(IIV (V, V ), V )
)

.

As v((F ◦ V )2) = 2gv(∇v
vV, v) = 0 and v(gV (U,U)) = 2gv(∇v

vU, u) = 0, and
using Lemma 11, we have

gv((∇vQ)v(u, u), v)

= −v

(

gV (U,U)
2(F ◦ V )2(φ ◦ V )2

h(II′(V, V ),W )h(V/(F ◦ V ) − W�V

S∩Σ, V )
)

= − gv(u, u)
2F (v)2φ(v)2

(

−2
v(φ ◦ V )

φ(v)
h(II′(v, v),W )h( v

F (v) − W�v

S∩Σ, v)

+ v(h(II′(V, V ),W ))h( v
F (v) − W�v

S∩Σ, v)

+h(II′(v, v),W )v(h(V/(F ◦ V ) − W�V

S∩Σ, V ))
)

. (50)

Using that ∇vV = 0 and part (i) of Lemma 2,

˜∇vV = ̂∇v
vV + IIv(v, v) = Qv(v, v) + ∇v

vV + IIv(v, v) = IIv(v, v) (51)

is gv-orthogonal to Tπ(v)S � v, therefore h( v
F (v) − W, ˜∇vV ) = 0. Using also

Lemma 11, and recalling (32) and that ˜∇ is also the Levi-Civita connection of
h, we have

v(φ ◦ V ) = v(h( V
F◦V − W, V

F◦V )) = 1
F (v)h(˜∇vV, v

F (v) ) = 1
F (v)h(IIv(v, v), v

F (v) )

= 1
F (v)φ(v)h(II′(v, v),W )h( v

F (v) − W�v

S∩Σ, v
F (v) ). (52)

By Definition 6,

v(h(II′(V, V ),W )) = v(h(II′(V, V ),W⊥))

= h(˜∇v(II′(V, V )),W⊥π(v)) + h(II′(v, v), ˜∇v(W⊥))

= h((∇̄vII′)(v, v),W ) + 2h(II′(∇̄vV, v),W )

+ h(II′(v, v), ˜∇v(W⊥)).

As W is constant, ˜∇v(W⊥) = −˜∇v(W�) and

h(II′(v, v), ˜∇v(W⊥)) = −h(II′(v, v), II′(v,W�π(v))).

Furthermore, ∇̄vV = (˜∇vV )�π(v) = (IIv(v, v))�π(v) = 1
φ(v)h(II′(v, v),W )( v

F (v)−
W�v

S∩Σ) by (51) and Lemma 11, therefore

h(II′(∇̄vV, v),W ) =
1

φ(v)
h(II′(v, v),W )h(II′( v

F (v) − W�v

S∩Σ, v),W ),
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which leads to

v(h(II′(V, V ),W )) = h((∇̄vII′)(v, v),W ) − h(II′(v, v), II′(v,W�π(v)))

+
2

φ(v)
h(II′(v, v),W )h(II′( v

F (v) − W�v

S∩Σ, v),W ). (53)

Let V
F◦V , E2, · · · , Er be a gV -orthonormal local frame of S in a neighborhood

of π(v) such that ∇v
vEi = 0. This can be obtained, for example, by making the

∇V -parallel translation of a gv-orthonormal basis of Tπ(v)S along the integral
curves of V , since we can assume that the integral curve of V passing through
π(v) is a geodesic of (S,L|S). Therefore ˜∇vEi = IIv(v,Ei) + Qv(v,Ei) for
i = 2, . . . , r. Then E2, . . . , Er at every p ∈ S where it is defined is an h-
orthogonal frame of Tπ(Vp)S ∩ TVp/F (Vp)Σ and h(Ei, Ei) = φ ◦ V (recall part
(ii) of Lemma 8). This implies that

W�V

S∩Σ =
1

φ ◦ V

r
∑

i=2

h(W,Ei)Ei. (54)

As a consequence,

v(h( V
F◦V − W�V

S∩Σ, V )) = v

(

1
F ◦ V

h(V, V ) − 1
φ ◦ V

r
∑

i=2

h(W,Ei)h(Ei, V )

)

.

(55)

In the following, we will use that TVp/F (Vp)Σ coincides with {Vp/F (Vp)−W}⊥Vp

at every p ∈ S where V is defined, and then, in particular, V/(F ◦ V ) − W is
h-orthogonal to Ei, which implies that h(W,Ei) = 1

F◦V h(V,Ei) and then

h(W,Ei)h(Ei, V ) = F ◦ V h(W,Ei)2.

Taking this into account and (51), we get

v(h( V
F◦V − W�V

S∩Σ, V )) =
2

F (v)
h(IIv(v, v), v) +

v(φ ◦ V )
φ(v)2

r
∑

i=2

h(W,Ei)h(Ei, v)

− 2F (v)
φ(v)

r
∑

i=2

h(W, IIv(v,Ei) + Qv(v,Ei))h(Ei,W ).

(56)

Moreover, using (52) and (54),

v(φ ◦ V )
φ(v)2

r
∑

i=2

h(W,Ei)h(Ei, v) =
1

φ(v)2F (v)2
h(IIv(v, v), v)h(

r
∑

i=2

h(W,Ei)Ei, v)

=
1

φ(v)F (v)2
h(IIv(v, v), v)h(W�v

S∩Σ, v). (57)

On the other hand, using again (54) and that v/F (v) − W is h-orthogonal to
Tv/F (v)Σ, and observing that gv(IIv(v,W�v

S∩Σ) + Qv(v,W�v

S∩Σ), v) = 0 (because
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of the definition of IIv and part (i) of Lemma 3) and then IIv(v,W�v

S∩Σ) +
Qv(v,W�v

S∩Σ) ∈ Tv/F (v)Σ,

− 2F (v)
φ(v)

r
∑

i=2

h(W, IIv(v,Ei) + Qv(v,Ei))h(Ei,W )

= −2F (v)h(W, IIv(v,W�v

S∩Σ) + Qv(v,W�v

S∩Σ))

= −2h(v, IIv(v,W�v

S∩Σ) + Qv(v,W�v

S∩Σ)). (58)

Observe that using (33), that Ei is h-orthogonal to V/(F ◦ V ) − W , and (54),

W�gv = gv(
v

F (v)
,W )

v

F (v)
+

r
∑

i=2

gv(W,Ei)Ei

= gv(
v

F (v)
,W )

v

F (v)
+

r
∑

i=2

1
F (v)φ(v)2

h(v,Ei)Ei

= gv(
v

F (v)
,W )

v

F (v)
+

r
∑

i=2

1
φ(v)2

h(W,Ei)Ei

= gv(
v

F (v)
,W )

v

F (v)
+

1
φ(v)

W�v

S∩Σ. (59)

Now applying (33), (59), parts (i) and (ii) of Lemma 3, and Proposition 9,

h(Qv(v,W�v

S∩Σ), v) = φ(v)2F (v)gv(Qv(v,W�v

S∩Σ),W )

= φ(v)2F (v)gv(Qv(v,W�v

S∩Σ),W�gv ) = F (v)φ(v)gv(Qv(v,W�v

S∩Σ),W�v

S∩Σ)

= −F (v)φ(v)Cv(W�v

S∩Σ,W�v

S∩Σ, IIv(v, v))

=
1

2F (v)φ(v)
h(W�v

S∩Σ,W�v

S∩Σ)h(IIv(v, v), v).

Using the above identity in (58) and then the resulting identity and (57) in
(56), it follows that

v(h( V
F◦V − W�V

S∩Σ, V )) =
2

F (v)
h(IIv(v, v), v)

+
1

φ(v)F (v)2
h(IIv(v, v), v)h(W�v

S∩Σ, v)

− 2h(v, IIv(v,W�v

S∩Σ))

− 1
F (v)φ(v)

h(W�v

S∩Σ,W�v

S∩Σ)h(IIv(v, v), v).

Observing that h( v
F (v) ,W

�v

S∩Σ) = h(W,W�v

S∩Σ) = h(W�v

S∩Σ,W�v

S∩Σ) and
applying Lemma 11, we have
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v(h( V
F◦V − W�V

S∩Σ, V )) =
2

F (v)
h(IIv(v, v), v) − 2h(v, IIv(v,W�v

S∩Σ))

=
2

φ(v)

(

1
F (v)

h(II′(v, v),W ) − h(W, II′(v,W�v

S∩Σ))
)

h(
v

F (v)
− W�v

S∩Σ, v).

(60)

Using (52), (53) and (60) in (50), we obtain

gv((∇vQ)v(u, u), v) = − gv(u, u)
2F (v)2φ(v)2

(

− 2
φ(v)2

h(II′(v, v),W )2h

(

v
F (v) − W�v

S∩Σ, v
F (v)

)2

+ h

(

v

F (v)
− W�v

S∩Σ, v

)

[

h((∇̄vII′)(v, v),W ) − h(II′(v, v), II′(v,W�π(v)))

+
2

φ(v)
h(II′(v, v),W )h

(

II′( v
F (v) − W�v

S∩Σ, v),W
)

+
2

φ(v)
h(II′(v, v),W )

(

1
F (v)

h(II′(v, v),W ) − h(W, II′(v,W�v

S∩Σ))
)])

.

Finally, a straightforward simplification of the above identity leads to (49)
taking into account that h( v

F (v) − W�v

S∩Σ,W�v

S∩Σ) = 0, as commented above,
and then

h( v
F (v) − W�v

S∩Σ, v
F (v) ) = h( v

F (v) − W�v

S∩Σ, v
F (v) − W�v

S∩Σ). (61)

�

We have already all the information to express the flag curvature of a
submanifold S in terms of elements related to the Zermelo data (h,W ). More
precisely, apart from h and W , we will use the second fundamental form II′ of S
computed with h, and its derivative ∇̄II′, where ∇̄ is the h-induced connection
of S, and the h-projections of W , W� and W�v

S∩Σ to TpS and TpS ∩ Tv/F (v)Σ,
respectively.

Theorem 14. Let (V , F ) be a Randers–Minkowski space with Zermelo data
(h,W ) and S, a submanifold of V . For v ∈ TS \ 0 and u ∈ Tπ(v)S,

Kv(u) = (h( v
F (v) ,

v
F (v) ) − h( ũ

|ũ|h , v
F (v) )

2)Kh(v, u)

+

∣

∣

∣

v
F (v) − W�v

S∩Σ

∣

∣

∣

2

h

φ(v)2F (v)2h(ũ, ũ)
(h(II′(u, u),W )h(II′(v, v),W ) − h(II′(u, v),W )2)

+
1

2F (v)3φ(v)2

∣

∣

∣

v
F (v) − W�v

S∩Σ

∣

∣

∣

2

h

[

h((∇̄vII′)(v, v),W )

− h(II′(v, v), II′(v,W�π(v)))
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+ 1
φ(v)2F (v)h(II′(v, v),W )2(4φ(v) − 5

2

∣

∣

∣

v
F (v) − W�v

S∩Σ

∣

∣

∣

2

h
)

− 4
φ(v)

h(II′(v, v),W )h(II′(v,W�v

S∩Σ),W ))
]

, (62)

where Kh(v, u) is the Riemannian sectional curvature in the plane span{v, u}
computed with the metric induced by h on S, φ(v) = h(v/F (v) − W, v/F (v))
and ũ = u − 1

φ(v)h(v/F (v) − W,u)v/F (v).

Proof. Assume that gv(v, u) = 0 and recall that, by Corollary 6, taking into
account that K̃v(u) = 0 and P̃ = 0 in a Randers–Minkowski space,

Kv(u) =
1

φ(v)
h(IIv(u, u), IIv(v, v)) − h(IIv(u, v), IIv(u, v))

gv(u, u)F (v)2

+
1

gv(u, u)F (v)2
(Cv(u,Qv(u, v), IIv(v, v)) − gv((∇vQ)v(u, u), v))) .

(63)

Using Lemma 11, it follows that

h(IIv(u, u), IIv(v, v)) − h(IIv(u, v), IIv(u, v)) = h(II′(u, u), II′(v, v))

− h(II′(u, v), II′(u, v))

+
1

φ(v)2

∣

∣

∣

v
F (v) − W�v

S∩Σ

∣

∣

∣

2

h
(h(II′(u, u),W )h(II′(v, v),W )

− h(II′(u, v),W )2). (64)

Moreover, as we have assumed that gv(v, u) = 0, we can apply part (ii) of
Lemma 8 to compute

φ(v)(gv(u, u)F (v)2 − gv(u, v)2) = F (v)2h(u, u),

and then

h(u, u)h(v, v) − h(u, v)2

φ(v)(gv(u, u)F (v)2 − gv(u, v)2)
= h( v

F (v) ,
v

F (v) ) − h( u
|u|h , v

F (v) )
2. (65)

Given an arbitrary u ∈ Tπ(v)S, then ũ = u − gv(v/F (v), u)v/F (v) is a vector
such that {ũ, v} generates the same plane as {u, v} and gv(ũ, v) = 0. Using
part (i) of Lemma 8, one has

ũ = u − gv(v/F (v), u)v/F (v) = u − 1
φ(v)

h(v/F (v) − W,u)v/F (v).

Taking into account (64) and (65), it follows that the first term in (63) be-
comes the two first terms to the right hand side in (62). From (46), (61) and
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Lemma 11,

Cv(u,Qv(u, v), IIv(v, v))

= − 1
4φ(v)4F (v)4

gv(u, u)h(II′(v, v),W )2h( v
F (v) − W�v

S∩Σ, v)2

= − gv(u, u)
4φ(v)4F (v)2

h(II′(v, v),W )2
∣

∣

∣

v
F (v) − W�v

S∩Σ

∣

∣

∣

4

h
,

and then using Lemma 13, we conclude that the last term in (63) coincides
with the three last terms in (62). �

Corollary 15. Let (V , F ) be a Randers–Minkowski space with Zermelo data
(h,W ) and S, a submanifold of V . Then S is of scalar flag curvature if and
only if for every v ∈ A,

(h( v
F (v) ,

v
F (v) ) − h( u

|u|h , v
F (v) )

2)Kh(v, u)

+

∣

∣

∣

v
F (v) − W�v

S∩Σ

∣

∣

∣

2

h

φ(v)2F (v)2h(u, u)
(h(II′(u, u),W )h(II′(v, v),W ) − h(II′(u, v),W )2)

has the same value for every u ∈ Tπ(v)S such that gv(v, u) = 0.

4.3. Hypersurfaces in Randers–Minkowski Spaces

We will consider now the case in that S is a hypersurface of V . In such a case,
given v ∈ TS \ 0, there exists a unique vector ξv ∈ V (up to a sign) such
that ξv is gv-orthogonal to Tπ(v)S and gv(ξv, ξv) = 1. Moreover, there exists
σv : Tπ(v)S × Tπ(v)S → R such that

IIv(u,w) = σv(u,w)ξv

for all u,w ∈ Tπ(v)S. Analogously, for every p ∈ S, there exists Np ∈ V such
that Np is h-orthogonal to TpS and h(Np, Np) = 1, and σ′

p : TpS × TpS → R

such that

II′(u,w) = σ′
p(u,w)Np

for all u,w ∈ TpS.

Lemma 16. Let S be a hypersurface of a Randers–Minkowski space (V , F ).
With the above notation,

ξv =

√

φ(v)
√

1 − h(Nπ(v),W )2

(

Nπ(v) + h(Nπ(v),W )
(

v
F (v) − W

))

(66)

is the gv-orthogonal vector to Tπ(v)S with gv(ξv, ξv) = 1, and

σv(u,w) =
σ′(u,w)

√

φ(v)(1 − h(Nπ(v),W )2)
(67)

for all v ∈ TS \ 0 and u,w ∈ Tπ(v)S.



124 Page 28 of 33 M. Huber and M. A. Javaloyes Results Math

Proof. Let us show that ξv is gv-orthogonal to Tπ(v)S. First observe that
h(Nπ(v), v) = 0 by definition, and then h(Nπ(v),W ) = −h(Nπ(v),

v
F (v) − W ).

This implies that ξv is h-orthogonal to v
F (v) −W (recall that h( v

F (v) −W, v
F (v) −

W ) = 1), and then by part (i) of Lemma 8, gv-orthogonal to v. If u ∈
Tv/F (v)Σ ∩ Tπ(v)S, then by part (ii) of Lemma 8, gv(ξv, u) = 1

φ(v)h(ξv, u) = 0,
because u is h-orthogonal to Nπ(v) and v

F (v) − W , since it lies respectively
in Tπ(v)S and Tv/F (v)Σ. This concludes that ξv is gv-orthogonal to Tπ(v)S,
because Tv/F (v)Σ ∩ Tπ(v)S has dimension dim S − 1 and v /∈ Tv/F (v)Σ. Ob-
serving that gv(ξv, ξv) = 1

φ(v)h(ξv, ξv) by part (ii) of Lemma 8, it is straight-
forward to check that gv(ξv, ξv) = 1. Finally, as II′(u,w) − IIv(u,w) is tan-
gent to Tπ(v)S by Lemma 11, it follows that σ′(u,w)Nπ(v) = II′(u,w) =

IIv(u,w)⊥π(v) = σv(u,w)ξ⊥π(v)
v = σv(u,w)h(Nπ(v), ξv)Nπ(v), and then one has

σ′(u,w) = σv(u,w)h(Nπ(v), ξv). As h(Nπ(v), ξv) =
√

φ(v)(1 − h(Nπ(v),W )2),
the last identity is equivalent to (67), which concludes. �

Corollary 17. Let (V , F ) be a Randers–Minkowski space with Zermelo data
(h,W ) and S, a hypersurface of V . For v ∈ TS \ 0 and u ∈ Tπ(v)S,

(1 − h(Nπ(v),W )2)Kv(u)

= (h( v
F (v) ,

v
F (v) ) − h( ũ

|ũ|h , v
F (v) )

2)Kh(v, u)

+
1

2F (v)3

[

∇̄vσ′(v, v)h(Nπ(v),W ) − σ′(v, v)σ′(v,W�π(v))

+ 1
φ(v)F (v)h(Nπ(v),W )2σ′(v, v)2(4 − 5φ(v)

2(1 − h(Nπ(v),W )2)
)

− 4
φ(v)

h(Nπ(v),W )2σ′(v, v)σ′(v,W�v

S∩Σ)
]

, (68)

where Kh(v, u) is the Riemannian curvature in the plane {v, u} computed with
the metric induced by h on S, and ũ = u − 1

φ(v)h(v/F (v) − W,u)v/F (v).

Proof. Let us compute the flag curvature using (28). The second term to the
right hand side can be computed using Lemma 16, resulting

σ′(u, u)σ′(v, v) − σ′(v, u)2

φ(v)(1 − h(Nπ(v),W )2)L(v)gv(u, u)
(69)

choosing u such that gv(v, u) = 0. Proceeding as in (65), we obtain the first
term to the right hand side in (68). Now observe that

W�v

S∩Σ = W − φ(v)h(Nπ(v),W )
1 − h(Nπ(v),W )2

Nπ(v)

−
(

−1 +
φ(v)

1 − h(Nπ(v),W )2

)

(

v
F (v) − W

)

. (70)
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This follows from the fact that Tπ(v)S ∩ Tv/F (v)Σ = {Nπ(v),
v

F (v) − W}⊥h and
that the right hand side is h-orthogonal to both, Nπ(v) and v

F (v) −W as it can
be easily checked. From (70), one gets immediately,

v
F (v) − W�v

S∩Σ = − φ(v)
1 − h(Nπ(v),W )2

(

h(Nπ(v),W )Nπ(v) + v
F (v) − W

)

,

and then

| v
F (v) − W�v

S∩Σ|2h =
φ(v)2

1 − h(Nπ(v),W )2
.

Taking into account the above identity and that ∇̄XII′(Y,Z) = (∇̄Xσ′)(Y,Z)N
for any X,Y,Z ∈ X(S), we obtain the other terms of (68) from the last terms
of (62). �

Corollary 18. A hypersurface S of a Randers–Minkowski space (V , F ) with
Zermelo data (h,W ) is of scalar flag curvature if and only if

(h( v
F (v) ,

v
F (v) ) − h( u

|u|h , v
F (v) )

2)Kh(v, u)

does not depend on u for any u ∈ Tπ(v)S such that gv(v, u) = 0.

Corollary 19. Let (V , F ) be a Randers–Minkowski space with Zermelo data
(h,W ). Then any h-flat hypersurface S of (V , h) has F -scalar flag curvature
and its Zermelo metric is conformally flat.

Corollary 20. Let (V , F ) be a Randers–Minkowski space with Zermelo data
(h,W ). The flag curvature of the indicatrix Σ at x ∈ Σ is given by

Kv(u) =
1

1 − h(Nx,W )2

[

h( v
F (v) ,

v
F (v) ) − h( ũ

|ũ|h , v
F (v) )

2

+
h(v, v)

2F (v)3(1 − h(Nx,W )2)
(−h(v,W )(1 + 3h(Nx,W )2)

+
3

2F (v)
h(Nx,W )2h(v, v)

]

,

where v ∈ TS \ 0, u ∈ TxS, ũ = u − 1
φ(v)h(v/F (v) − W,u)v/F (v) and Nx =

−(x − W ).

Proof. First observe that the second fundamental form of Σ with respect to
h is the restriction of h to Σ whenever one chooses as the normal vector
Nx = −(x − W ). Then ∇̄σ′ = 0, since ∇̄ is the induced connection, which
in Riemannian geometry turns out to be the Levi-Civita connection of the
induced metric on S. Moreover, σ′(v,W�π(v)) = h(v,W�π(v)) = h(v,W ) as v
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is tangent to S and using (70), we deduce that

h(v,W�v

S∩Σ) = h(v,W ) − (−1 +
φ(v)

1 − h(Nx,W )2
)h( v

F (v) − W, v)

= h(v,W )
φ(v)

1 − h(Nx,W )2
− 1

F (v)
h(v, v)

(

−1 +
φ(v)

1 − h(Nx,W )2

)

.

(71)

With all this information, and taking into account that the h-Riemannian
curvature of Σ is equal to 1, (71) follows from (68). �

Remark 21. Observe that for the sake of simplicity we have written this sec-
tion for classical Randers metrics, but all the computations, up to some sign,
hold for pseudo-Randers–Kropina metrics, which can be characterized by its
Zermelo data (h,W ), being h a non-degenerate scalar product and W an ar-
bitrary constant vector with no restrictions of norm (see [29, Section 2.3]).
Several observations are in order:

(i) Kropina norms are obtained when h is positive definite and h(W,W ) = 1,
and all the submanifolds will be of Kropina type (this can be obtained
as a consequence of the generalization of Proposition 10).

(ii) When h(W,W ) > 1, the situation is more complex, as there are two
metrics. This is called a wind Riemannian structure in [10]. Our results
can be applied to both metrics and an application of Proposition 10 shows
that the induced metric is always a wind Riemannian structure (neither
Randers nor Kropina). For a classificacion of wind Riemannian structures
with constant flag curvature see [27].

(iii) In any case, it is also true that the h-flat hypersurfaces have F -scalar
flag curvature and that we can obtain families of Kropina metrics with
scalar flag curvature (see [43] for further results on Kropina metrics with
scalar flag curvature and [45,46] for a classificacion of Kropina metrics
with constant flag curvature).
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d’un espace général. Annales scientifiques de l’Univ. de Iaçi 20, 39–58 (1935)
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