Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.3390/math8101848

Título: Boolean valued representation of random Sets and markov kernels with application to large deviations
Fecha de publicación: 20-oct-2020
Editorial: MDPI
Cita bibliográfica: Mathematics 2020, 8, 1848
ISSN: Electronic: 2227-7390
Palabras clave: Boolean valued analysis
Random sets
Markov kernels
Large deviations
Resumen: We establish a connection between random set theory and Boolean valued analysis by showing that random Borel sets, random Borel functions, and Markov kernels are respectively represented by Borel sets, Borel functions, and Borel probability measures in a Boolean valued model. This enables a Boolean valued transfer principle to obtain random set analogues of available theorems. As an application, we establish a Boolean valued transfer principle for large deviations theory, which allows for the systematic interpretation of results in large deviations theory as versions for Markov kernels. By means of this method, we prove versions of Varadhan and Bryc theorems, and a conditional version of Cramér theorem.
Autor/es principal/es: Avilés López, Antonio
Autor/es secundario/s: Zapata García, José Miguel
Versión del editor: https://www.mdpi.com/2227-7390/8/10/1848
URI: http://hdl.handle.net/10201/149308
DOI: https://doi.org/10.3390/math8101848
Tipo de documento: info:eu-repo/semantics/article
Derechos: info:eu-repo/semantics/openAccess
Atribución 4.0 Internacional
Descripción: © 2020 by the authors. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/. This document is the Published version of a Published Work that appeared in final form in Mathematics. To access the final edited and published work see https://doi.org/10.3390/math8101848
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2021-mathematics-Vol8-No10-1848.pdfBoolean Valued Representation of Random Sets and Markov Kernels with Application to Large Deviations395,62 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons