Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.3390/math8101848


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor | Zapata García, José Miguel | - |
dc.contributor.author | Avilés López, Antonio | - |
dc.date.accessioned | 2025-01-26T09:59:42Z | - |
dc.date.available | 2025-01-26T09:59:42Z | - |
dc.date.issued | 2020-10-20 | - |
dc.identifier.citation | Mathematics 2020, 8, 1848 | - |
dc.identifier.issn | Electronic: 2227-7390 | - |
dc.identifier.uri | http://hdl.handle.net/10201/149308 | - |
dc.description | © 2020 by the authors. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/. This document is the Published version of a Published Work that appeared in final form in Mathematics. To access the final edited and published work see https://doi.org/10.3390/math8101848 | - |
dc.description.abstract | We establish a connection between random set theory and Boolean valued analysis by showing that random Borel sets, random Borel functions, and Markov kernels are respectively represented by Borel sets, Borel functions, and Borel probability measures in a Boolean valued model. This enables a Boolean valued transfer principle to obtain random set analogues of available theorems. As an application, we establish a Boolean valued transfer principle for large deviations theory, which allows for the systematic interpretation of results in large deviations theory as versions for Markov kernels. By means of this method, we prove versions of Varadhan and Bryc theorems, and a conditional version of Cramér theorem. | es |
dc.format | application/pdf | es |
dc.language | eng | es |
dc.publisher | MDPI | - |
dc.relation | Becas MTM2017-86182-P, Fundación Séneca 20797/PI/18, Fundación Séneca 20903/PD/18. | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Boolean valued analysis | - |
dc.subject | Random sets | - |
dc.subject | Markov kernels | - |
dc.subject | Large deviations | - |
dc.title | Boolean valued representation of random Sets and markov kernels with application to large deviations | es |
dc.type | info:eu-repo/semantics/article | es |
dc.relation.publisherversion | https://www.mdpi.com/2227-7390/8/10/1848 | - |
dc.identifier.doi | https://doi.org/10.3390/math8101848 | - |
dc.contributor.department | Departamento de Estadística e Investigación Operativa | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2021-mathematics-Vol8-No10-1848.pdf | Boolean Valued Representation of Random Sets and Markov Kernels with Application to Large Deviations | 395,62 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons