Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.jmaa.2023.127072

Título: Representation of weakly maxitive monetary risk measures and their rate functions
Fecha de publicación: 31-ene-2023
Editorial: Elsevier
Cita bibliográfica: J. Math. Anal. Appl. 524 (2023) 127072
ISSN: Print: 0022-247X
Electronic: 1096-0813
Palabras clave: Maxitive monetary risk measure
Large deviations
Rate function
Laplace principle
Resumen: This article provides a representation result for monetary risk measures (i.e., monotone translation-invariant functionals) satisfying a weak maxitivity property. This result can be understood as a functional analytic generalization of the Gärtner-Ellis large deviations theorem. In contrast to the classical Gärtner-Ellis theorem, the rate function is computed on an arbitrary set of continuous real-valued functions rather than the dual space. As an application of the main result, we establish a large deviations result for sequences of sublinear expectations on regular Hausdorff topological spaces.
Autor/es principal/es: Zapata García, José Miguel
Versión del editor: https://www.sciencedirect.com/science/article/pii/S0022247X23000756?via%3Dihub
URI: http://hdl.handle.net/10201/149291
DOI: https://doi.org/10.1016/j.jmaa.2023.127072
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 20
Derechos: info:eu-repo/semantics/openAccess
Atribución 4.0 Internacional
Descripción: © 2023 The Author(s). This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/. This document is the Published version of a Published Work that appeared in final form in Journal of Mathematical Analysis and Applications. To access the final edited and published work see https://doi.org/10.1016/j.jmaa.2023.127072
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2023-JMAA-Vol524-No1-127072.pdfRepresentation of Weakly Maxitive Monetary Risk Measures and Their Rate Functions515,22 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons