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1. Introduction

The theory of large deviations studies the asymptotic tail behavior of sequences of random variables. 
The earliest developments of this theory arose in the context of ruin theory in actuarial science [10,11], 
while Varadhan and Donsker [13,27] systematically developed the modern framework of this field. First, we 
recall the basic principles of large deviations theory; we refer to the excellent monograph by Dembo and 
Zeitouini [12] for further details and the historical background.

Let E be a regular Hausdorff topological space and let (Xn)n∈N be a sequence of E-valued random 
variables defined in a common probability space (Ω, F , P ). The sequence (Xn)n∈N is said to satisfy the 
large deviation principle (LDP) with rate function I : E → [0, ∞] if

− inf
x∈int(A)

I(x) ≤ lim inf
n→∞

1
n

logP (Xn ∈ A) ≤ lim sup
n→∞

1
n

logP (Xn ∈ A) ≤ − inf
x∈cl(A)

I(x)
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for all Borel sets A ⊂ E.2 Varadhan’s integral lemma asserts that a sequence (Xn)n∈N that satisfies the 
LDP with rate function I(·) also satisfies the Laplace principle (LP) with rate function I(·); that is,

ψ(f) = sup
x∈E

{f(x) − I(x)}

for all f ∈ Cb(E).3 We denote by ψ(f) = limn→∞
1
n logEP [enf(Xn)] the asymptotic entropy of f .4 The 

converse of Varadhan’s integral lemma also holds true under additional regularity conditions; Bryc [4]
established this statement assuming that I(·) has compact sublevel sets, and Comman [6] proved the same 
assuming that E is normal. In addition, Bryc’s theorem states that both the LDP and the LP hold with 
the rate function I(x) = supf∈Cb(E){f(x) − ψ(f)} if the sequence (Xn)n∈N is exponentially tight.5 The 
functional ψ : Cb(E) → R has some properties that are crucial in this theory. First, ψ is a monetary 
risk measure; that is, it is monotone (i.e., ψ(f) ≤ ψ(g) whenever f ≤ g) and translation invariant (i.e., 
ψ(f + c) = ψ(f) + c). Second, the asymptotic entropy ψ has the remarkable property of being maxitive 
(i.e., ψ(f ∨ g) ≤ ψ(f) ∨ ψ(g)). The properties of a maxitive monetary risk measure are sufficient to prove 
generalized versions of all the basic results mentioned above covering this type of functional, striping away 
any probabilistic aspect of the theory. Bell and Bryc [3] introduced and studied a general LP for monetary 
risk measures6 on Cb(E) and, more recently, Kupper and Zapata [20] formulated a general LDP for this 
kind of functional and extended to this general setting the Varadhan-Bryc equivalence between the LDP 
and the LP, and Bryc’s theorem.

As a continuation of the research in [20], in the present article we aim to identify new situations where a 
monetary risk measure satisfies the LP and the LDP and, in particular, how to compute the rate function 
I(·). While our main result applies to general monetary risk measures satisfying a weak form of maxitivity, we 
explain it now for easier readability for the case of the asymptotic entropy ψ(f) = limn→∞

1
n logEP [enf(Xn)], 

where for simplicity in the exposition we assume that the latter limit exists for all real-valued continuous 
functions f . In the following we fix an arbitrarily given non-empty set H of continuous real-valued functions 
on E, and consider the corresponding conjugate ψ∗

H, which is defined by ψ∗
H(x) = supf∈H{f(x) − ψ(f)}. 

We wish to establish sufficient conditions so that (Xn)n∈N satisfies the LDP with rate function ψ∗
H. We say 

that a point x ∈ E is H-exposed for ψ∗
H if there exists a function f ∈ H such that

ψ∗
H(y) − f(y) > ψ∗

H(x) − f(x) for all y �= x. (1.1)

The interpretation of the exposing condition (1.1) is that, for a certain constant c, the curve y 	→ f(y) + c

lies strictly below the curve ψ∗
H on E \ {x}, and agrees with it at x. Denote by E the set of all H-exposed 

points of E. In the special case of the asymptotic entropy, the main result of this article reads as follows.

Theorem 1.1. Suppose that the sequence (Xn)n∈N is exponentially tight. Then

(i) for every closed set C ⊂ E, we have the upper bound

lim sup
n→∞

1
n

logP (Xn ∈ C) ≤ − inf
y∈C

ψ∗
H(x);

2 We denote by int(A) and cl(A) the topological interior and closure of A ⊂ E, respectively.
3 We denote by Cb(E) the set of all bounded continuous real-valued functions on E.
4 The limit in ψ(f) exists for all f ∈ Cb(E) if (Xn) satisfies the LDP.
5 That is, for all positive numbers M , there exists K ⊂ E compact such that lim supn→∞

1
n logP(Xn ∈ Kc) ≤ −M .

6 Bell and Bryc [3] use the term Varadhan functional rather than monetary risk measure. Here, we use the term monetary risk 
measure to build a bridge toward risk analysis.
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(ii) for every open set O ⊂ E, we have the lower bound

− inf
y∈O∩E

ψ∗
H(x) ≤ lim inf

n→∞
1
n

logP (Xn ∈ O);

(iii) if, moreover,

inf
x∈O

ψ∗
H(x) = inf

x∈O∩E
ψ∗
H(x) for all O ⊂ E open,

then (Xn)n∈N satisfies the LDP and the LP with rate function ψ∗
H.

Of great importance, the Gärtner-Ellis theorem provides the LDP for sequences of random variables with 
values on a topological vector space by testing the rate function on the dual space. This well-known result 
turns out to be a particular instance of Theorem 1.1 for the special case when E is a topological vector space 
and the particular choice H = E∗; see [12, Theorem 4.5.20]. One of the novelties of Theorem 1.1 is that it 
allows for different options for the testing set H, instead of limiting us to the dual space. Moreover, it is well 
known that the Gärtner-Ellis theorem does not cover all cases in which an LDP exists; there are examples 
for which the LDP holds but it does not follow from this basic result; see [12, Remarks(d), p. 45] and [8]. In 
contrast, Theorem 1.1 allows for arbitrary choices of H, covering situations where the Gärtner-Ellis theorem 
fails. This is illustrated in Example 5.5, where we have a situation where an LDP is not covered by the 
Gärtner-Ellis theorem but is captured by our choosing a family H of inverted V-shaped functions.

Our main result for the particular functional ψ(f) = limn→∞
1
n logEP [enf(Xn)] as stated above applies 

to very general functionals, allowing us to cover some nonstandard setups as those in [2,9,14,16,17,22,26,29]. 
For instance, in situations with model uncertainty, one may be interested in considering a set P of probability 
measures rather than a single probability measure P ; see [9,26]. This situation is covered by our main result 
by considering the robust asymptotic entropy ψP(f) = lim supn→∞

1
n log supQ∈P EQ[enf(Xn)]. In particular, 

we extend to infinite-dimensional spaces the version of the Gärtner-Ellis theorem for sequences of sublinear 
expectations on Rd proven in [26] with the advantage that the rate function is now tested on arbitrary sets 
of continuous functions.

The present approach fully relies on topological and order properties and, in particular, an underlying 
probability space is not needed. We emphasize that the existing proofs of the Gärtner-Ellis theorem are 
based on probability concepts such as the Radon-Nykodym derivative that are not needed here; see [12, 
Theorem 4.5.20]. In line with [21,23], the machinery is taken from maxitive integration. More specifically, as 
in [21] we use the convex integral introduced by Cattaneo [5], which is conceptually related to the idempotent 
integral in tropical mathematics [19] and can be obtained as a transformation of the Shilkret integral [25]. 
In particular, we rely on the duality bounds for convex integrals and the convex integral representation of 
weakly maxitive monetary risk measures provided in [21].

This article is organized as follows. In Section 2 we give some preliminaries on maxitive integration. In 
Section 3 we focus on the integral representation of weakly maxitive monetary risk measures. In Section 4
we state and prove the main result of this article. Finally, in Section 5 we apply the main result to obtain 
a large deviations result for sequences of sublinear expectations on regular Hausdorff topological spaces.

2. Preliminaries on maxitive integration

Throughout this article, let E be a regular Hausdorff topological space with Borel σ-algebra B(E). We 
always use the convention that −∞ · 0 = 0. Then, given a function f : E → R ∪ {−∞}, the function 
f1A −∞1Ac takes the same values as f on A ⊂ E and the value −∞ on Ac.

A set function J : B(E) → [−∞, 0] is said to be a concentration if
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(a1) J∅ = −∞, JE = 0;
(a2) JA ≤ JB whenever A ⊂ B.

We say that J is maxitive if

(a3) JA∪B ≤ JA ∨ JB .

Denote by B(E) the set of all Borel measurable functions f : E → R ∪{−∞}. We define the convex integral
of f ∈ B(E) with respect to the concentration J as7

φJ(f) = sup
c∈R

{
c + J{f>c}

}
. (2.1)

Properties (b1)–(b4) below are provided in [5], and their proofs easily adapt to the present setting. The 
proof of (b5) can be found in [21, Lemma 4.1].

(b1) φJ(−∞1Ac) = JA for all A ∈ B(E).
(b2) φJ(0) = 0.
(b3) φJ(f + c) = φJ(f) + c for all constant c ∈ R.
(b4) φJ(f) ≤ φJ(g) whenever f ≤ g.
(b5) lim

n→∞
φJ(f ∧ n) = φJ(f) and lim

n→∞
φJ(f ∨ −n) = φJ (f).

If J is maxitive, then the following hold:

(b6) φJ is maxitive; that is, φJ (f ∨ g) ≤ φJ (f) ∨ φJ(g).
(b7) φJ is convex; that is, φJ (λf + (1 − λ)g) ≤ λφJ(f) + (1 − λ)φJ(g) for all 0 ≤ λ ≤ 1.

The proofs of (b6) and (b7) can be found in [5] in Corollary 5 and Theorem 7, respectively. Denote by 
L(E) the set of all lower semicontinuous functions f : E → R ∪ {−∞} and by U(E) the set of all upper 
semicontinuous functions f : E → R ∪ {−∞}. The following duality bounds were proved in [21, Theorem 
3.4].8

Theorem 2.1. Let J be a concentration and let I : E → [0, ∞] be a function. Then the following equivalences 
hold. First,

− inf
x∈O

I(x) ≤ JO for all open sets O ⊂ E (2.2)

if and only if

φJ(f) ≥ sup
x∈E

{f(x) − I(x)} for all f ∈ L(E). (2.3)

Second,

JC ≤ − inf
x∈C

I(x) for all closed sets C ⊂ E (2.4)

7 It is not difficult to show that φJ(f) = supc∈R

{
c + J{f>c}

}
= supc∈R

{
c + J{f≥c}

}
; that is, we obtain an equivalent definition 

of φJ(f) if the strict inequality in (2.1) is replaced by a nonstrict inequality.
8 Theorem 3.4 in [21] deals with functions that are increasing with respect to a given preorder. To apply Theorem 3.4 in [21]

here, we consider the trivial preorder (i.e., x ≤ y whenever x = y).
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if and only if

φJ(f) ≤ sup
x∈E

{f(x) − I(x)} for all f ∈ U(E). (2.5)

The minimal rate function Imin : E → [0, ∞] associated with a concentration J is defined as

Imin(x) := sup
f∈L(E)

{f(x) − φJ(f)}. (2.6)

Proposition 2.2. Let J be a concentration and suppose that Imin is defined as in (2.6). Then Imin is the 
smallest mapping I : E → [0, ∞] that satisfies the equivalent inequalities (2.2) and (2.3).

The minimal rate function has the following representation; see [21, Lemma 3.5].

Proposition 2.3. Let J be a concentration and suppose that Imin is defined as in (2.6). For all x ∈ E it holds 
that

−Imin(x) = inf
U∈Ux

JU ,

where Ux is a base of open neighborhoods of x ∈ E.

The following notion was introduced in [21].

Definition 2.4. A concentration J is said to be weakly maxitive if

JC ≤ ∨N
i=1JOi

for all C ⊂ E closed, O1, O2, . . . , ON ⊂ E open, N ∈ N, such that C ⊂ ∪N
i=1Oi.

Notice that every maxitive concentration J is also weakly maxitive.

Definition 2.5. We say that a concentration J is tight if for every n ∈ N there exists a compact set K ⊂ E

such that JKc < −n.

The following result was provided in [20, Theorem 4.1] (see [20, Remark 4.2]) and [21, Corollary 3.10]
under slightly different assumptions. For completeness, we provide a short proof.

Proposition 2.6. Let J be a concentration and suppose that Imin is defined as in (2.6). If J is tight and 
weakly maxitive, then Imin satisfies (2.2), (2.3), (2.4), and (2.5).

Proof. In view of Theorem 2.1 and Proposition 2.2, it is enough to show (2.4). Suppose that C ⊂ E is 
closed. Fix ε > 0. Since J is tight, there exists a compact set such that −JKc ≥ ε−1. From Proposition 2.3
and by compactness, there exists x1, . . . , xN ∈ K ∩ C and open sets U1, . . . , UN such that xi ∈ Ui ⊂ E for 
all i ∈ {1, 2, . . . , N} and

−JUi
≥ (I(xi) − ε) ∧ ε−1 for all i = 1, 2, . . . , N.

Set in addition U0 := Kc. We have C ⊂ ∪N
i=0Ui. Since J is weakly maxitive, we have

−JC ≥ ∧N
i=0(−JUi

) ≥ ∧N
i=0(I(xi) − ε) ∧ ε−1 ≥

(
inf
x∈C

I(x) − ε

)
∧ ε−1.

Letting ε ↓ 0, we obtain the result. �
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3. Integral representation of maxitive monetary risk measures

A monetary risk measure9 is a function φ : B(E) → [−∞, ∞] satisfying the following:

• Normalization: φ(0) = 0.
• Monotonicity: φ(f) ≤ φ(g) whenever f ≤ g.
• Translation invariance: φ(f + c) = φ(f) + c for all c ∈ R.

We say that a monetary risk measure φ is maxitive if it satisfies

φ(f ∨ g) ≤ φ(f) ∨ φ(g) for all f, g ∈ B(E).

From (b2)–(b4) in Section 2, the convex integral (2.1) is a monetary risk measure that is maxitive if the 
corresponding concentration is maxitive. In the following, we focus on the converse direction and analyze 
when a monetary risk measure can be represented as a convex integral. Denote by B̄(E) the set of all 
f ∈ B(E) such that f is bounded from above. The following result was obtained in a slightly different 
setting in [5, Corollary 6]. We provide a short proof in the present setting.

Theorem 3.1. Let φ : B(E) → [−∞, ∞] be a maxitive monetary risk measure and let JA = φ(−∞1Ac) for 
all A ∈ B(A). Then J is a maxitive concentration, and

φ(f) = φJ(f)

for all f ∈ B̄(E).

Proof. For every function f : E → R ∪ {−∞} that is bounded from above and every set A ⊂ E, we define

φ̄(f) := inf
g∈B(E) : f≤g

φ(g) and J̄A := φ̄(−∞1Ac).

Inspection shows that φ̄ is finitely maxitive and additively homogeneous in the sense of [5]. By Corollary 6 
in [5], we have

φ̄(f) = sup
c∈R

{c + J̄{f≥c}}

for all f that are bounded from above. In particular, for f ∈ B(E), we have

φ(f) = φ̄(f) = sup
c∈R

{c + J̄{f≥c}} = sup
c∈R

{c + J{f≥c}} = φJ(f).

This completes the proof. �
By relaxing the maxitivity condition, we may still represent a monetary risk measure on continuous 

functions. The following notion was introduced in [21].

Definition 3.2. A monetary risk measure φ : B(E) → [−∞, ∞] is said to be weakly maxitive if

φ(f) ≤ ∨N
i=1φ(gi) for all f ∈ U(E), g1, g2, . . . , gN ∈ L(E), N ∈ N, such that f ≤ ∨N

i=1gi.

9 Here we use the terminology of [15] up to a sign change.
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Define C(E) = U(E) ∩L(E) and C̄(E) = C(E) ∩ B̄(E). The following result was shown in [21, Theorem 
4.2].10

Theorem 3.3. Let φ : B(E) → [−∞, ∞] be a weakly maxitive monetary risk measure and let JA = φ(−∞1Ac)
for all A ∈ B(A). Then J is a weakly maxitive concentration, and

φ(f) = φJ (f)

for all f ∈ C̄(E).

Given a function φ : B(E) → [−∞, ∞], we define the following sets:

Bφ(E) := {f ∈ B(E) : there exists t > 1 such that φ(tf) < ∞} .

Cφ(E) := {f ∈ C(E) : there exists t > 1 such that φ(tf) < ∞} .

Lemma 3.4. Let φ : B(E) → [−∞, ∞] be a monetary risk measure. If f ∈ Bφ(E), then

lim
m→∞

φ
(
f1{f≥m} −∞1{f<m}

)
= lim

m→∞
φ
(
f1{f>m} −∞1{f≤m}

)
= −∞.

Proof. Suppose that f ∈ Bφ(E), and take t > 1 such that φ(tf) < ∞. Fix m ∈ N and define g = exp(f−m). 
By translation invariance and monotonicity, we have

−m + φ
(
f1{f≥m} −∞1{f<m}

)
= φ

(
−m + f1{f≥m} −∞1{f<m}

)
= φ

(
log(g)1{g≥1} −∞1{g<1}

)
≤ φ

(
log(gt)

)
= φ (t(f −m))

= −mt + φ (tf) .

Therefore, it follows that

lim
m→∞

φ
(
f1{f>m} −∞1{f≤m}

)
≤ lim

m→∞
φ
(
f1{f≥m} −∞1{f<m}

)
≤ lim

m→∞

(
m(1 − t) + φ (tf)

)
= −∞,

where the latter limit is −∞ since t > 1 and φ (tf) < −∞. This completes the proof. �
We next extend Theorems 3.1 and 3.3 to unbounded functions as follows.

Theorem 3.5. Let φ : B(E) → [−∞, ∞] be a monetary risk measure and let the concentration JA =
φ(−∞1Ac) for all A ∈ B(E). Then

(1) if φ is maxitive, then φ(f) = φJ(f) for all f ∈ Bφ(E);
(2) if φ is weakly maxitive, then φ(f) = φJ(f) for all f ∈ Cφ(E).

10 To apply Theorem 4.2 in [21] here, we consider the trivial preorder (i.e., x ≤ y whenever x = y).
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Proof. We prove (2). Suppose that φ is weakly maxitive. Fix f ∈ Cφ(E) and n ∈ N. We have

f ≤ (f ∧ n) ∨
(
f1{f>n} −∞1{f≤n}

)
.

Since f is upper semicontinuous, and the functions in the maximum on the right-hand side are lower 
semicontinuous, it follows from the weak maxitivity of φ that

φ(f) ≤ φ (f ∧ n) ∨ φ
(
f1{f>n} −∞1{f≤n}

)
= φJ (f ∧ n) ∨ φ

(
f1{f>n} −∞1{f≤n}

)
, (3.1)

where we have applied φ (f ∧ n) = φJ (f ∧ n) by Theorem 3.1. On the other hand,

φ(f) ≥ φ(f ∧ n) = φJ(f ∧ n). (3.2)

Then, (3.1) and (3.2) yield

φJ(f ∧ n) ≤ φ(f) ≤ φJ (f ∧ n) ∨ φ
(
f1{f>n} −∞1{f≤n}

)
.

We have limn→∞ φ 
(
f1{f>n} −∞1{f≤n}

)
= −∞ by Lemma 3.4. By letting n → ∞, we get φ(f) =

φJ(f). �
4. Main result

Throughout this section we consider two monetary risk measures φ, φ : B(E) → [−∞, ∞] that satisfy the 
following.

Assumption 4.1.

(1) For every f ∈ B(E), φ(f) ≤ φ(f).
(2) φ is weakly maxitive.
(3) φ(f) ≤ φ(g1) ∨

(
∨N
i=2 φ(gi)

)
for all f ∈ U(E), and g1, g2, . . . , gN ∈ L(E), N ∈ N, such that f ≤ ∨N

i=1gi.

Remark 4.2. Assumption 4.1 covers the case of a single (weakly) maxitive monetary risk measure φ by our 
taking φ := φ := φ. In that case, (1)–(3) are automatically satisfied. In the application in the next section, 
we deal with lower/upper large deviations bounds, which is the reason why we consider a pair of monetary 
risk measures rather than a single monetary risk measure.

We consider the concentrations J, J : B(E) → [−∞, 0] given by JA = φ(−∞1Ac) and JA = φ(−∞1Ac). 
In addition, we denote by I and I the respective minimal rate functions defined as in (2.6). As in [20], we 
introduce the LDP and the LP for monetary risk measures.

Definition 4.3. Suppose that I : E → [0, ∞] is a rate function.

• We say that the pair φ, φ satisfies the LDP with rate function I(·) if

− inf I(x) ≤ JA ≤ JA ≤ − inf I(x) for all A ∈ B(E).

x∈int(A) x∈cl(A)
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• We say that the pair φ, φ satisfies the LP with rate function I(·) if

φ(f) = φ(f) = sup
x∈E

{f(x) − I(x)} for all f ∈ Cφ(E).

Remark 4.4. In [20, Proposition 5.2] the equivalence between the LDP and the LP is proven under the 
hypothesis that E is normal (the normality is needed only to prove that the LP implies the LDP). Notice 
that in [20], the LP is defined on Cb(E). Here we consider the larger space Cφ(E). That the LDP implies 
the LP as defined above is a simple consequence of the duality bounds proven in [21] (see Theorem 2.1). 
We give the argument in the Appendix.

In the following, let H be a distinguished nonempty set of continuous real-valued functions on E. We 
define the conjugate φ

∗
H : E → [−∞, ∞] of φ with respect to H as

φ
∗
H(x) := sup

f∈H
{f(x) − φ(f)}.

Definition 4.5. We say that x ∈ E is an H-exposed point of φ∗
H if there exists f ∈ H such that

f(y) − φ
∗
H(y) < f(x) − φ

∗
H(x) for all y �= x.

In that case, we say that f is an exposing function for x. We denote by E the set of all H-exposed points 
x ∈ E of φ∗

H that admit an exposing function f ∈ H such that

φ(f) = φ(f) and f ∈ Bφ(E). (4.1)

Remark 4.6. If x is an H-exposed point, then φ
∗
H(x) < ∞ and f(x) > −∞.

We now present the main result of this section.

Theorem 4.7. Suppose that J is tight. Then

(i) for all x ∈ E , I(x) = I(x) = φ
∗
H(x);

(ii) for every closed set C ⊂ E, we have the upper bound

JC ≤ − inf
y∈C

φ
∗
H(x);

(iii) for every open set O ⊂ E, we have the lower bound

− inf
y∈O∩E

φ
∗
H(x) ≤ JO;

(iv) if, moreover,

inf
x∈O

φ
∗
H(x) = inf

x∈O∩E
φ
∗
H(x) for every O ⊂ E open, (4.2)

then the pair φ, φ verifies the LDP and the LP with rate function φ
∗
H.

Remark 4.8. Given a sequence of E-valued random variables (Xn)n∈N defined in a probability space 
(Ω, F , P ), we define the lower and upper asymptotic entropies by
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ψ(f) := lim inf
n→∞

1
n

logEn[enf(Xn)], ψ(f) := lim sup
n→∞

1
n

logEn[enf(Xn)].

We prove in Section 5 (see also [21]) that ψ and ψ satisfy Assumption 4.1. In addition, we also have that 
the respective concentrations J and J are given by

JA = lim inf
n→∞

1
n

logP (Xn ∈ A), JA = lim sup
n→∞

1
n

logP (Xn ∈ A).

Moreover, the tightness of J is exactly the exponential tightness of the sequence (Xn)n∈N . Then we have 
that Theorem 1.1 is a direct consequence of Theorem 4.7.

To prove Theorem 4.7, we need some preliminary results.

Lemma 4.9. φ∗
H(x) ≤ I(x) ≤ I(x) for all x ∈ E.

Proof. Given x ∈ E, we know from their respective definitions that I(x) ≤ I(x). Fix now f ∈ H and n ∈ N. 
Since φ is weakly maxitive and f ∧ n ∈ C̄(E), by Theorem 3.3 we have

φJ(f ∧ n) = φ(f ∧ n).

By monotonicity, we have

φJ(f ∧ n) = φ(f ∧ n) ≤ φ(f).

From (b5), letting n → ∞ results in

φJ(f) ≤ φ(f).

Thus, we have

f(x) − φ(f) ≤ f(x) − φJ(f) ≤ I(x).

Since f ∈ H was arbitrary, it follows that

φ
∗
H(x) = sup

f∈H
{f(x) − φ(f)} ≤ I(x).

The proof is complete. �
Lemma 4.10. Let K ⊂ E be compact and let x ∈ E be an H-exposed point of φ∗

H with exposing function 
f ∈ H. Then for every open set U ⊂ E such that x ∈ U , there exists an open set W ⊂ E such that

(1) K ∩ U c ⊂ W ,
(2) sup

y∈cl(W )

{
f(y) − φ

∗
H(y)

}
< f(x) − φ

∗
H(x).

Proof. For each ε > 0, define

Vε :=
{
y ∈ E : f(y) − φ

∗
H(y) + ε < f(x) − φ

∗
H(x)

}
.
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Since the mapping y 	→ f(y) −φ
∗
H(y) is upper semicontinuous, we have that Vε is open. We claim that there 

exists ε > 0 such that K ∩ U c ⊂ Vε. Indeed, by contradiction, assume that for every ε > 0 we can pick up 
yε ∈ K ∩ U c such that

f(yε) − φ
∗
H(yε) + ε ≥ f(x) − φ

∗
H(x).

Then (yε)ε>0 is a net in the compact set K.11 We can take a subnet (yεα) such that yεα → y ∈ K ∩ U c. 
Taking the limit superior on α, and using the property that y 	→ f(y) − φ

∗
H(y) is upper semicontinuous, we 

get

f(y) − φ
∗
H(y) ≥ f(x) − φ

∗
H(x).

Besides, we have y �= x as y ∈ U c and x ∈ U . This contradicts x being an H-exposed point. We have that 
K ∩ U c is a compact set contained in the open set Vε. Since E is regular, we can find an open set W ⊂ E

such that K ∩ U c ⊂ cl(W ) ⊂ Vε. Finally, the set W meets the required conditions. �
Proposition 4.11. Suppose that x ∈ E and that f ∈ H is an exposing function for x satisfying (4.1). If J is 
tight, then for every open set U ⊂ E with x ∈ U it holds that

φ(f1U −∞1Uc) = φ(f) = φ(f) = φ(f1U −∞1Uc).

Proof. Let f ∈ H be an exposing function for x satisfying (4.1). Fix n ∈ N. Since J is tight, there exists a 
compact set K ⊂ E such that

JKc < −2n. (4.3)

From Lemma 4.10, we can find an open set W ⊂ E such that

K ∩ U c ⊂ W, sup
y∈cl(W )

{
f(y) − φ

∗
H(y)

}
< f(x) − φ

∗
H(x). (4.4)

Since

E = K ∪Kc

⊂ (K ∩ U) ∪ (K ∩ U c) ∪
(
Kc ∩ {f < n + 1}

)
∪
(
Kc ∩ {f > n}

)
⊂ U ∪W ∪

(
Kc ∩ {f < n + 1}

)
∪ {f > n},

from Assumption 4.1 we have

φ(f) = φ(f)

≤ φ (f1U −∞1Uc) ∨ φ (f1W −∞1W c) ∨ φ ((n + 1)1Kc −∞1K) ∨ φ
(
f1{f>n} −∞1{f≤n}

)
. (4.5)

In addition, by the definition of φ∗
H, we have

φ(f) ≥ f(x) − φ
∗
H(x). (4.6)

On the other hand, J is weakly maxitive and tight. From Theorem 3.5 and Proposition 2.6, we have

11 Here {ε : ε > 0} is regarded as a downward-directed set.
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φ (f1W −∞1W c) ≤ φ
(
f1cl(W ) −∞1cl(W )c

)
= φJ

(
f1cl(W ) −∞1cl(W )c

)
≤ sup

y∈cl(W )
{f(y) − I(y)}

≤ sup
y∈cl(W )

{f(y) − φ
∗
H(y)}

< f(x) − φ
∗
H(x),

where we have used φ
∗
H(y) ≤ I(y) from Lemma 4.9 in the second inequality and (4.4) in the third inequality. 

The last inequality is strict. Then in view of (4.6), we can drop the second member of the maximum in 
(4.5), obtaining

φ(f) ≤ φ (f1U −∞1Uc) ∨ φ ((n + 1)1Kc −∞1K) ∨ φ
(
f1{f>n} −∞1{f≤n}

)
. (4.7)

By monotonicity and translation invariance, we get

φ ((n + 1)1Kc −∞1K) = φ (−∞1K) + n + 1

= JKc + n + 1

≤ −2n + n + 1 = −n + 1,

where we have used (4.3) in the last inequality. Therefore,

lim
n→∞

φ ((n + 1)1Kc −∞1K) = −∞. (4.8)

On the other hand, f ∈ Bφ(E) by (4.1). Applying Lemma 3.4, we have

lim
n→∞

φ
(
f1{f>n} −∞1{f≤n}

)
= −∞. (4.9)

Consequently, letting n → ∞ in (4.7) results in

φ(f) ≤ φ (f1U −∞1Uc) .

Finally, by monotonicity we have

φ (f1U −∞1Uc) ≤ φ (f1U −∞1Uc) ≤ φ(f) ≤ φ (f1U −∞1Uc) ,

and the desired equalities follow. �
We now turn to the proof of Theorem 4.7.

Proof. Let x ∈ E , and take an exposing function f ∈ H for x satisfying (4.1). Fix an open neighborhood U
of x and ε > 0. Since f is upper semicontinuous, we can find an open neighborhood V ⊂ U of x such that

f(y) < f(x) + ε for all y ∈ V. (4.10)

From Proposition 4.11,



J.M. Zapata / J. Math. Anal. Appl. 524 (2023) 127072 13
φ(f) = φ(f1V −∞1V c)

≤ φ
(
(f(x) + ε)1V −∞1V c

)
= JV + f(x) + ε ≤ JU + f(x) + ε. (4.11)

On the other hand, from the definition of φ∗
H we have

φ(f) ≥ f(x) − φ
∗
H(x). (4.12)

Combining (4.11) and (4.12), we get

−φ
∗
H(x) ≤ JU + ε.

Letting ε ↓ 0, we obtain

−φ
∗
H(x) ≤ JU .

Since U was arbitrary, it follows from Proposition 2.3 that

φ
∗
H(x) ≥ I(x).

Finally, by Lemma 4.9 we have φ
∗
H(x) ≤ I(x) ≤ I(x), obtaining (i).

Suppose that C ⊂ E is closed. Since J is tight and weakly maxitive, by Proposition 2.6 we have

JC ≤ − inf
x∈C

I(x) ≤ − inf
x∈C

φ
∗
H(x),

where we have used φ
∗
H(x) ≤ I(x). This proves (ii).

Suppose now that O ⊂ E is open. It follows from Proposition 2.2 that

JO ≥ − inf
x∈O

I(x)

≥ − inf
x∈O∩E

I(x)

= − inf
x∈O∩E

φ
∗
H(x),

where we have used I(x) = φ
∗
H(x) for all x ∈ E by (i). Then (iii) follows.

Finally, we obtain that the pair φ, φ satisfies the LDP with rate function φ
∗
H as a consequence of (ii) and 

(iii) taking into account (4.2). In turn, from Proposition A.1 the pair φ, φ also satisfies the LP with rate 

function φ
∗
H. �

Example 4.12.

(1) Topological vector spaces: Every topological vector space is regular. Then Theorem 4.7 applies to (Haus-
dorff) topological vector spaces. In that case, we can consider H := E∗, the set of all linear continuous 
real-valued functions on E. Define Λ := φ|E∗ . Since φ is weakly maxitive because of Assumption 4.1, we 
have that φ is maxitive on the set C(E). It follows from [20, Proposition 2.1] that φ is convex on C(E)
and, in particular, Λ is a convex function. Then we have that Λ∗ := φ∗

E∗ is the convex conjugate of Λ.
(2) Finite dimension: Suppose now that E = Rd and H = (Rd)∗ = Rd. Consider the following conditions:

(a) Λ(y) = φ(y) = φ(y) for y ∈ Rd.
(b) 0 belongs to the topological interior of {y ∈ Rd : φ(y) < ∞}.
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(c) Λ is lower semicontinuous.
(d) Λ is essentially smooth in the sense of [12, Definition 2.3.5].
Under conditions (a)–(c) above, the condition (4.2) in Theorem 4.7 holds. This is proved by following 
word by word the argumentation in the proof of (c) in [12, Theorem 2.3.6]. We conclude that, in the 
present situation, we can replace (4.2) in Theorem 4.7 by conditions (a)–(c) above.

(3) Exposing families of functions: A family (fa)a∈E of functions in Cφ is said to be an exposing family for 
φ, φ if for every x ∈ E we have φ(fx) = φ(fx) = 0 and

fx(y) < sup
a∈E

fa(y) for all y �= x.

If J is tight and H = {fa : a ∈ E} for an exposing family (fa)a∈E , then E = E,

I(x) = I(x) = φ
∗
H(x) = sup

a∈E
fa(x) for all x ∈ E,

and the pair φ, φ satisfies the LDP and the LP with rate function φ
∗
H. This can be proven as follows. 

First, since φ(fa) = 0 for all a ∈ E, it follows that

φ
∗
H(x) = sup

a∈E
fa(x) for all x ∈ E.

Then, given x ∈ E, for each y �= x we have

φ
∗
H(y) − fx(y) = sup

a∈E
fa(y) − fx(y) > 0.

On the other hand,

φ
∗
H(x) − fx(x) = sup

a∈E
fa(x) − fx(x) ≤ 0.

It follows that x is H-exposed. Since x was arbitrary, we conclude that E = E. Thus, the condition 
(4.2) is trivially satisfied, and we get the conclusions as a consequence of Theorem 4.7.

5. Large deviation principle for sequences of sublinear expectations

We finally apply Theorem 4.7 to study large deviations for sequences of sublinear expectations. Denote 
by B+(E) the set of all Borel measurable functions f : E → [0, ∞). A function E : B+(E) → [0, ∞] is called 
a sublinear expectation if

(1) E(c) = c for all constant c ≥ 0,
(2) E(f) ≤ E(g) whenever f ≤ g,
(3) E(f + g) ≤ E(f) + E(g),
(4) E(af) = aE(f) for all constant a ≥ 0.

A functional that satisfies properties (1)–(4) is also called an upper expectation in robust statistics [18], an 
upper coherent prevision in the theory of imprecise probabilities [28], or (up to a sign change) a coherent 
risk measure in mathematical finance [1].

Example 5.1. Suppose that X is an E-valued random variable defined on a probability space (Ω, F , P ). 
Consider a nonempty set P of probability measures on F . Then the mapping E : B+(E) → [0, ∞] given by
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E(f) := sup
Q∈P

EQ[f(X)]

is a sublinear expectation.

In the following, we consider a sequence (En)n∈N of sublinear expectations. We define the lower and 
upper asymptotic entropies ψ, ψ : B(E) → R as

ψ(f) := lim inf
n→∞

1
n

log En(enf ), ψ(f) := lim sup
n→∞

1
n

log En(enf ).

Straightforward inspection shows that ψ and ψ are monetary risk measures. The following lemma is well 
known in large deviations theory and is often referred to as the principle of the largest term; see, for 
example, [12, Lemma 1.2.15] for (5.1) and [24, Exercise 14.8] for (5.2).

Lemma 5.2. Suppose that (a1
n)n∈N , (a2

n)n∈N , . . . , (aNn )n∈N are [0, ∞]-valued sequences. Then

lim sup
n→∞

1
n

log
N∑
i=1

ain ≤ ∨N
i=1lim sup

n→∞

1
n

log ain, (5.1)

lim inf
n→∞

1
n

log
N∑
i=1

ain ≤
(
lim inf
n→∞

1
n

log a1
n

)
∨
(
∨N
i=2 lim sup

n→∞

1
n

log ain
)
. (5.2)

As a consequence, we have the following lemma.

Lemma 5.3. ψ and ψ satisfy Assumption 4.1.

Proof. We prove that

ψ(f) ≤ ∨N
i=1ψ(gi)

for f ∈ U(E) and g1, g2, . . . , gn ∈ L(E) with f ≤ ∨n
i=1gi. Indeed, as a consequence of Lemma 5.2, we have

ψ(f) ≤ lim sup
n→∞

1
n

log En
(
en(∨N

i=1gi)
)

≤ lim sup
n→∞

1
n

log En

(
N∑
i=1

engi

)

≤ lim sup
n→∞

1
n

log
N∑
i=1

En (engi)

≤ ∨N
i=1lim sup

n→∞

1
n

log En (engi)

= ∨N
i=1ψ(gi). �

Adopting the usual terminology of standard large deviations theory [12], we introduce the following:

• We say that the sequence (En)n∈N is exponentially tight if for every n ∈ N there exists a compact set 
K ⊂ E such that

lim sup 1 logμn(Kc) < −n.

n→∞ n
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Here μn : B(E) → [0, 1] is the capacity associated with En, which is given by μn(A) = En(1A).
• We say that (En)n∈N satisfies the LDP with rate function I : E → [0, ∞] if

− inf
x∈int(A)

I(x) ≤ lim inf
n→∞

1
n

logμn(A)

≤ lim sup
n→∞

1
n

logμn(A) ≤ − inf
x∈cl(A)

I(x)

for all A ∈ B(E).
• We say that (En)n∈N satisfies the LP with rate function I : E → [0, ∞] if

lim
n→∞

1
n

log En(enf ) = sup
x∈E

{f(x) − I(x)} (5.3)

for all f ∈ Cψ(E).

Notice that the exponential tightness of (En)n∈N is equivalent to the tightness of J in the sense of 
Definition 2.5.

We turn next to the main result of this section. Let H be a distinguished nonempty set of continuous 
real-valued functions on E. Denote by E the set of all H-exposed points of ψ∗

H that admit an exposing 
function f ∈ H such that

ψ(f) = ψ(f) = lim
n→∞

1
n

log En(enf ) and f ∈ Bψ(E).

In view of Lemma 5.3, we have the following result as a direct consequence of Theorem 4.7.

Theorem 5.4. Suppose that the sequence (En)n∈N of sublinear expectations is exponentially tight. Then

(i) for every closed set C ⊂ E, we have the upper bound

lim sup
n→∞

1
n

logμn(C) ≤ − inf
y∈C

ψ
∗
H(x);

(ii) for every open set O ⊂ E, we have the lower bound

− inf
y∈O∩E

ψ
∗
H(x) ≤ lim inf

n→∞
1
n

logμn(O);

(iii) if, moreover,

inf
x∈O

ψ
∗
H(x) = inf

x∈O∩E
ψ
∗
H(x) for all O ⊂ E open, (5.4)

then (En)n∈N satisfies the LDP and the LP with rate function ψ
∗
H.

In the special case when H = E∗ is the dual space of a topological vector space E, Theorem 5.4 amounts 
to the well-known Gärtner-Ellis theorem; see [12, Theorem 4.5.20], and [26, Theorem 3.1] for a version for 
sublinear expectations. We have that Theorem 5.4 is more flexible as it allows for arbitrary choices for H. 
In the following example we show a case where the LDP and the LP follow from Theorem 5.4 but it is not 
covered by the Gärtner-Ellis theorem.
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Example 5.5. For each n ∈ N, let Xn be a real-valued random variable with a (centered) Laplace distribution 
of parameter 1/n; that is, Xn has density hn(x) = n

2 e
−n|x| for all x ∈ R.12 Consider the lower and upper 

asymptotic entropies

ψ(f) = lim inf
n→∞

1
n

logEP [enf(Xn)], ψ(f) = lim sup
n→∞

1
n

logEP [enf(Xn)].

For every m ∈ N, define the compact set Km := [−m, m]. Then JKc
m

= −m. Hence, (Xn)n∈N is exponen-
tially tight. Consider H1 = R∗ = R as in the Gärtner-Ellis theorem [12, Theorem 4.5.20]. In that case, for 
every y ∈ H1 = R,

ψ(y) = ψ(y) = lim
n→∞

1
n

log
∞∫

−∞

n
2 e

nyx−n|x|dx =
{

0 if |y| < 1,
∞ if |y| ≥ 1.

Hence,

ψ
∗
H1

(x) = sup
y∈R

{yx− ψ(y)} = |x|.

The only exposed point of ψ∗
H1

is 0. Then for every open set O ⊂ R that does not contain the origin, 
the classical Gärtner-Ellis theorem gives only a trivial lower bound − infy∈O∩{0} ψ

∗
H1

(y) = −∞, and the 
condition (5.4) is not satisfied.

Now consider the set of continuous functions

H2 := {fa : a ∈ R} ,

where

fa(x) := |a| − 2|x− a|.

Direct verification yields ψ(fa) = ψ(fa) = 0 for every a ∈ R. Consequently, we have

ψ
∗
H2

(x) = sup
a∈R

fa(x) = |x|.

This shows that H2 is an exposing family as in Example 4.12(3). Therefore, the set of all H2-exposed points 
is R, and ψ

∗
H2

trivially verifies the condition (5.4) (Fig. 1).
Then (iii) in Theorem 5.4 gives the LDP

− inf
y∈int(A)

|y| ≤ lim inf
n→∞

1
n logP (Xn ∈ A) ≤ lim sup

n→∞
1
n logP (Xn ∈ A) ≤ − sup

y∈cl(A)
|y|,

where the lower bound is not trivial whenever int(A) �= ∅. Moreover, we obtain the LP

ψ(f) = ψ(f) = lim
n→∞

1
n

log
∞∫

−∞

n
2 e

n(f(x)−|x|)dx = sup
x∈R

{f(x) − |x|}

for all f ∈ Cψ(E). The present example illustrates that the Gärtner-Ellis theorem does not capture the 
lower bound in the LDP when the rate function has large parts that are not exposed by hyperplanes. In 

12 Equivalently, Xn is the difference of two independent random variables with exponential distribution parameter n.
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Fig. 1. Every point a is exposed with exposing function fa. In this case, we can see the exposing function for a = 1.

contrast, by considering other types of exposing functions (e.g., inverted V-shaped functions as in this case), 
we can produce richer classes of exposing points and prove an LDP by means of Theorem 5.4.

Although the Gärtner-Ellis theorem does not capture the lower bound in the LDP, we may try other 
known methods to prove it. Next we briefly discuss some of these methods. We note that in this simple 
one-dimensional case the limit representation [12, Theorem 4.1.18] yields the rate function I(x) = |x|, but 
we would still need to prove the existence of an LDP to apply this result. Since (Xn)n∈N is exponentially 
tight, we may apply Bryc’s theorem [12, Theorem 4.4.2]. However, we need to verify that ψ(f) = ψ(f) for 
all f ∈ Cb(R) to derive the lower LDP bound, which is not straightforward. Alternatively, as proven in [7], 
one can replace Cb(R) in Bryc’s theorem by an algebra A of continuous functions separating the points of 
R, or any well-separating class A (i.e., A contains the constant functions, is closed under finite infima, and 
separates points of R). However, this method leads again to rather intricate classes of functions where we 
need to verify ψ(f) = ψ(f). In contrast, our method leads to a family of inverted V-shaped functions for 
which it is directly checked that ψ(f) = ψ(f) = 0.

Remark 5.6. The main result in [26] is a version of the Gärtner-Ellis theorem for sequences of sublinear 
expectations in a finite-dimensional setting, which is proven by adapting the proof of the standard case. This 
result is a particular instance of Theorem 5.4 for the special choices E = Rd and H = (Rd)∗ = Rd, taking 
into account (2) in Example 4.12. As illustrated in Example 5.5, this setting does not cover all Rd cases 
in which an LDP exists. In addition, Tan and Zong [26] consider sublinear expectations of the particular 
form En(f) = supQ∈P EQ[f(Xn)] for some set P of probability measures and a sequence of random variables 
(Xn)n∈N . In particular, this implies that the sublinear En is continuous from below because of the monotone 
convergence theorem. Such a continuity condition is not needed in the present approach. Also, among other 
restrictions, it is assumed in [26, Assumption 3.1]) that the limit limn→∞

1
n log En(exp(nf)) exists for all 

f ∈ E∗, which was not needed here. Furthermore, in [26] the LP is not derived (5.3).

Appendix A. Pairs of monetary risk measures

As a consequence of the duality bounds provided in [21] (see Theorem 2.1) and in line with [20, Proposition 
5.2] we have the following.
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Proposition A.1. Suppose that φ, φ is a pair of monetary risk measures such that φ is weakly maxitive and 
φ(f) ≤ φ(f) for all f ∈ B(E). If the pair φ, φ satisfies the LDP with rate function I(·), then the pair φ, φ
satisfies the LP with rate function I(·).

Proof. Suppose that the pair φ, φ satisfies the LDP with rate function I(·), and fix f ∈ Cφ(E). Since φ is 
weakly maxitive, from Theorem 3.5 we have φJ(f) = φ(f). By Theorem 2.1, we have

φ(f) = φJ(f) = sup
x∈E

{f(x) − I(x)}. (A.1)

Given x ∈ E and δ > 0, since f is upper semicontinuous, there exists U ∈ Ux such that infy∈U f(y) ≥ f(x) −δ. 
By monotonicity and translation invariance

φ(f) ≥ φ(f1U −∞1Uc) ≥ f(x) − δ + JU

≥ f(x) − δ − inf
y∈U

I(y) ≥ f(x) − δ − I(x).

Letting δ ↓ 0 and taking the supremum over all x ∈ E yields

φ(f) ≥ sup
x∈E

{f(x) − I(x)}.

This along with (A.1) shows that the pair φ, φ satisfies the LP with rate function I(·). �
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