Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1016/j.fss.2023.03.009


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Kupper, Michael | - |
dc.contributor.author | Zapata García, José Miguel | - |
dc.date.accessioned | 2025-01-26T10:04:59Z | - |
dc.date.available | 2025-01-26T10:04:59Z | - |
dc.date.issued | 2023-03-22 | - |
dc.identifier.citation | Fuzzy Sets and Systems 467(2023) 108506 | es |
dc.identifier.issn | Print: 0165-0114 | - |
dc.identifier.uri | http://hdl.handle.net/10201/149290 | - |
dc.description | © 2023 The Author(s). This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/. This document is the Published version of a Published Work that appeared in final form in Fuzzy Sets and Systems. To access the final edited and published work see https://doi.org/10.1016/j.fss.2023.03.009 | - |
dc.description.abstract | The Shilkret integral with respect to a completely maxitive capacity is fully determined by a possibility distribution. In this paper, we introduce a weaker topological form of maxitivity and show that under this assumption the Shilkret integral is still determined by its possibility distribution for functions that are sufficiently regular. Motivated by large deviations theory, we provide a Laplace principle for maxitive integrals and characterize the possibility distribution under certain separation and convexity assumptions. Moreover, we show a maxitive integral representation result for weakly maxitive non-linear expectations. The theoretical results are illustrated by providing large deviations bounds for sequences of capacities, and by deriving a monotone analogue of Cramér's theorem. | es |
dc.format | application/pdf | es |
dc.format.extent | 27 | es |
dc.language | eng | es |
dc.publisher | Elsevier | es |
dc.relation | Sin financiación externa a la Universidad | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Shilkret integral | es |
dc.subject | Capacity | es |
dc.subject | Possibility distribution | es |
dc.subject | Weak maxitivity | es |
dc.subject | Large deviation principle | es |
dc.subject | Laplace principle | es |
dc.title | Weakly maxitive set functions and their possibility distributions | es |
dc.type | info:eu-repo/semantics/article | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0165011423001318?via%3Dihub | - |
dc.identifier.doi | https://doi.org/10.1016/j.fss.2023.03.009 | - |
dc.contributor.department | Departamento de Estadística e Investigación Operativa | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2023-FSS-Vol467-108506.pdf | Weakly Maxitive Set Functions and Their Possibility Distributions | 485,2 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons