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Abstract

The Shilkret integral with respect to a completely maxitive capacity is fully determined by a possibility distribution. In this paper, 
we introduce a weaker topological form of maxitivity and show that under this assumption the Shilkret integral is still determined 
by its possibility distribution for functions that are sufficiently regular. Motivated by large deviations theory, we provide a Laplace 
principle for maxitive integrals and characterize the possibility distribution under certain separation and convexity assumptions. 
Moreover, we show a maxitive integral representation result for weakly maxitive non-linear expectations. The theoretical results 
are illustrated by providing large deviations bounds for sequences of capacities, and by deriving a monotone analogue of Cramér’s 
theorem.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction

Non-additive set functions, fuzzy measures and capacities play an important role in the theory of decision making 
under risk and uncertainty. They appear in possibility theory, idempotent/tropical mathematics and related fields, 
where maxitive measures and their maxitive integrals are studied; see, e.g., [11,12,19,30,33]. In this article we focus 
on the Shilkret integral introduced in [30]. An extension of this integral to functions taking negative values and its 
complete characterization was given in [6,7]. On the one hand, if � is a possibility measure [33], then the Shilkret 
integral is given by

S∫
f d� = sup

x
f (x)π(x),

where π denotes the corresponding possibility distribution. In this case, both the set function � and the Shilkret inte-
gral 

∫ S
f d� are completely maxitive. On the other hand, for the particular set function �̄A := lim supn→∞ P (Xn ∈
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A)1/n, where (Xn)n∈N is a sequence of random variables, the Laplace principle from the theory of large deviations 
ensures under reasonable assumptions that

S∫
f d�̄ = sup

x
f (x)e−I (x),

where I denotes the rate function; cf. Puhalskii [28]. Although the two representations for the Shilkret integral are 
very similar, in general, the second one is only valid for certain continuous functions. Thus, the set function �̄ satisfies 
only a weaker form of maxitivity, and consequently is not a possibility measure. Nevertheless, π̄(x) = e−I (x) can still 
be viewed as a corresponding possibility distribution. In this article, we characterize the class of set functions which 
admit a possibility distribution in a weaker topological sense by means of different notions of maxitivity.

In Section 2, we introduce some basics on possibility distributions and motivate our results. Section 3 includes the 
key bounds on maxitive integrals and their connection to weakly maxitive set functions. In Section 4, we focus on 
a maxitive integral representation result for weakly maxitive non-linear expectations. The results are then applied in 
Section 5, where we show that the basic results of large deviations theory are valid for general maxitive integrals; in 
particular, the equivalence between the monotone large deviation principle and the monotone Laplace principle. In 
Section 6, we provide conditions ensuring that the rate function is convex and study the corresponding representation. 
Finally, in Section 7, the theoretical results are illustrated with two examples. On the one hand, we study the asymptotic 
behavior of a sequence of capacities by providing some large deviations bounds, on the other hand we establish 
a monotone analogue of Cramér’s theorem for the sample mean of i.i.d. sequences. The paper concludes with an 
appendix, where we provide some separation results in preordered topological groups.

2. Background and motivation

Let E be a non-empty set and A be a collection of subsets of E such that ∅, E ∈ A. A set function � : A → R
is called a capacity, if �∅ = 0, �E = 1, and �A ≤ �B whenever A ⊂ B .1 Among the most important examples 
of capacities, we find probability measures in standard probability theory [18], possibility measures in possibility 
theory [11], and upper/lower probabilities in the theory of imprecise probabilities [32]. A capacity � is called a 
possibility measure [33], if there exists a possibility distribution π : E → [0, 1] such that

�A = sup
x∈A

π(x) for all A ∈A. (2.1)

A capacity � which admits a possibility distribution is automatically completely maxitive, i.e.,

�A ≤ ∨i∈I�Ai
whenever A ⊂ ∪i∈IAi, (2.2)

for all A ∈ A and every family (Ai)i∈I ⊂ A. Conversely, if A is closed under arbitrary unions and complements, 
then any supremum preserving capacity � admits a possibility distribution which is uniquely determined by π(x) =
�∩{A∈A : x∈A} for all x ∈ E; cf. [10]. Under additional continuity on the capacity and the assumption that A is rich 
enough,2 the existence of a possibility distribution is guaranteed if � is only finitely maxitive, i.e., �A ≤ ∨n

i=1�Bi

for all A, B1, . . . , Bn ∈A, n ∈N , with A ⊂ ∪n
i=1Bi ; cf. [1,24].

The Shilkret integral of a function f : E → [0, ∞] with respect to a capacity � is defined by

S∫
f d� := sup

c∈(0,∞)

c�{f >c}. (2.3)

Originally, the Shilkret integral was introduced for supremum preserving capacities, also called maxitive probabilities 
or idempotent probabilities [30]. However, this definition is valid for general capacities (not necessarily maxitive) 
provided that f is A-measurable, i.e., {f > c} ∈ A for all c ∈ R. In case that � admits a possibility distribution π , 
then the Shilkret integral takes the form

1 Typically A is endowed with some algebraic structure. Here, for the sake of generality we do not assume any structure on A.
2 E.g. the collection A forms a σ -algebra on a separable metric space which contains all Borel sets.
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S∫
f d� = sup

x∈E

f (x)π(x) (2.4)

for all A-measurable functions f : E → [0, ∞].
In this article, we analyze to what extent a capacity is still determined by a possibility distribution if the repre-

sentation (2.4) only holds for a certain class of A-measurable functions, e.g., all continuous, continuous bounded, 
or continuous increasing functions.3 We will see that this exactly holds when the capacity satisfies a weaker form of 
maxitivity.4 To do so, we will provide bounds for the Shilkret integral with respect to general capacities. For a capacity 
� and a function π : E → [0, 1], a key result of this work states that

S∫
f d� ≥ sup

x∈E

f (x)π(x) if and only if �O ≥ sup
x∈O

π(x), (2.5)

where the first inequality holds for all (increasing) lower semicontinuous functions f , and the second inequality holds 
for all (upwards closed) open sets O . Likewise,

S∫
f d� ≤ sup

x∈E

f (x)π(x) if and only if �C ≤ sup
x∈C

π(x), (2.6)

where the first inequality holds for all (increasing) upper semicontinuous functions f , and the second inequality holds 
for all (upwards closed) closed sets C. Instead of assuming the rather restrictive assumption (2.1), the relation between 
the capacity and its possibility distribution is relaxed to inequalities which are required only for certain nice topological 
sets. As a consequence, if the capacity � satisfies both the upper and lower bound, then the Shilkret integral has the 
representation (2.4) for all (increasing) continuous functions.

The Shilkret integral is only defined for non-negative functions. In order to deal with real-valued functions, we 
present and prove our results in terms of the maxitive integral introduced by Cattaneo [7], which is obtained as a 
transformation of the Shilkret integral. We say that a set function J : A → [−∞, 0] is a concentration if JE = 0, 
J∅ = −∞, and JA ≤ JB whenever A ⊂ B . In other words, J is a concentration if and only if eJ is a capacity. The 
maxitive integral of an A-measurable function f : E → [−∞, ∞) with respect to the concentration J is defined as

φJ (f ) := log

S∫
ef deJ = sup

c∈R
{c + J{f >c}}. (2.7)

As discussed in [7], the functional φJ shares the properties of a monetary risk measure [13], and satisfies in particular 
the translation property φJ (f +c) = φJ (f ) +c for all c ∈ R. In contrast, the Shilkret integral (2.3) fails the translation 
property unless the capacity � only assumes the values 0 and 1; cf. [9]. In particular, aside from this degenerate 
case, the Shilkret integral is neither a coherent prevision, nor a monetary risk measure. By defining the rate function 
I : E → [0, ∞] by I (x) := − logπ(x), the bound (2.5) takes the form

φJ (f ) ≥ sup
x∈E

{f (x) − I (x)} if and only if JO ≥ − inf
x∈O

I (x), (2.8)

for all (increasing) lower semicontinuous functions f , and all (upwards closed) open sets O , and the bound (2.6)
translates to

φJ (f ) ≤ sup
x∈E

{f (x) − I (x)} if and only if JC ≤ − inf
x∈C

I (x), (2.9)

for all (increasing) upper semicontinuous functions f , and all (upwards closed) closed sets C.
Similar type of bounds appear in the theory of large deviations, where the capacity has the special form �A :=

lim supn→∞ P (Xn ∈ A)1/n for a sequence (Xn)n∈N of random variables with values in a completely regular topo-
logical space E. In that case, the corresponding concentration is given by JA = lim supn→∞ 1

n
logP (Xn ∈ A) with 

3 Here, we assume that E is a topological preordered space.
4 I.e. �A ≤ ∨n

i=1�Bi
for (upwards closed) closed sets A and (upwards closed) open sets B1, . . . , Bn, n ∈N , with A ⊂ ∪n

i=1Bi . We emphasize 
that no additional continuity on � is required.
3
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respective maxitive integral φJ (f ) = lim supn→∞ 1
n

logEP [exp(nf (Xn))] for all bounded continuous functions f on 
E. Then the equivalences (2.8) and (2.9) amount to the well-known equivalence between the large deviation principle 
(LDP) and the Laplace principle (LP); cf. [5,28]. In this article, we will show that the key concepts of large devia-
tions theory can be understood and extended to the framework of weakly maxitive concentrations and their maxitive 
integrals; e.g., the equivalences (2.8) and (2.9) establish the equivalence between the LDP and the LP for general 
concentrations. This covers situations that are not captured by the standard setting of large deviations theory. For 
instance, in the theory of imprecise probability [32], we may be interested in large deviations bounds for upper prob-
abilities of the form P (A) = supP∈P P (A) for a set P of probability measures. Then we consider the concentration 
JA = lim supn→∞ 1

n
logP (Xn ∈ A), for which we will show in Subsection 7.1 that its maxitive integral is given by

φJ (f ) = lim sup
n→∞

1
n

log

∞∫
0

P (exp(nf (Xn)) > x)dx.

Standard large deviations theory provides conditions such that the usual upper bound lim supn→∞ 1
n

logP (Xn ∈
C) ≤ − infx∈C I (x) is valid for all closed sets C ⊂ E, and the usual lower bound lim infn→∞ 1

n
logP (Xn ∈ O) ≥

− infx∈O I (x) holds for all open sets O ⊂ E. However, one may be interested in finding bounds on certain smaller 
classes of sets. One of the features of the presented framework is that, by considering a preorder relation ≤ on E, 
we may restrict ourselves to the class of upwards closed sets for which we characterize large deviation bounds. As a 
result, we obtain a monotone version of Cramér’s theorem which provides new large deviations bounds for the sample 
mean of i.i.d. sequences.

3. Bounds for maxitive integral and weak maxitivity

In this section, we introduce the basic concepts and provide the key bounds for concentrations and the respective 
maxitive integrals. These bounds ensure a weak form of maxitivity which allows to connect concentrations and their 
maxitive integrals with rate functions.

3.1. Setting and notation

Let (E, ≤) be a topological preordered space.5 Let U be a base of the topology, and define Ux := {U ∈ U : x ∈ U}
for all x ∈ E. Moreover, for A ⊂ E, we define the upset and the downset as

↑A := {y ∈ E : x ≤ y for some x ∈ A} and ↓A := {y ∈ E : y ≤ x for some x ∈ A}.
We say that A ⊂ E is upwards closed if A = ↑A, and downwards closed if A = ↓A. Let O↑ denote the collection of 
all subsets A ⊂ E which are open and upwards closed, and C↑ be the collection of all subsets A ⊂ E which are closed 
and upwards closed. In addition, let C↑

c be the set of all C ∈ C↑ which are compactly generated, i.e., C = ↑K for some 
compact K ⊂ E. Similarly, we define the corresponding collections O↓ and C↓ of downwards closed sets, which are 
open and closed, respectively.

Throughout this section, we work under the following assumption.

Assumption 3.1. For every x, y ∈ E with x ≤ y, we assume that

(A) for every Ux ∈ Ux there exists Uy ∈ Uy such that Uy ⊂ ↑Ux .
(B) for every Uy ∈ Uy there exists Ux ∈ Ux such that Ux ⊂ ↓Uy .

In case that the preorder is trivial, i.e., x ≤ y if and only if x = y, then O↑ and C↑ coincide with the collections of 
all open and closed subsets of E, respectively, and the previous assumption is trivially satisfied.

5 Recall that a preorder is a reflexive and transitive binary relation. We do not assume any relations between the topology and the preorder.
4
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Remark 3.2. Let E be a Hausdorff topological abelian group. Suppose that E+ is a subset of E such that E+ +E+ ⊂
E+ and 0 ∈ E+. Then the binary relation defined by

x ≤ y if and only if y − x ∈ E+
is a translation invariant preorder on E. Direct verification shows that (E, ≤) satisfies Assumption 3.1.

On a functional level, the sets O↑ and C↑ correspond to the following spaces. We denote by L↑ the set of all 
increasing6 lower semicontinuous functions f : E → [−∞, ∞), by U↑ the set of all increasing upper semicontinuous 
functions f : E → [−∞, ∞), and by U↑

c the set of all f ∈ U↑ such that {f ≥ c} is compactly generated for all c ∈R. 
We first collect some basic topological properties.

Lemma 3.3. The following assertions hold.

(i) A ∈O↑ if and only if Ac ∈ C↓.
(ii) A ∈ C↑ if and only if Ac ∈O↓.

(iii) If f ∈ L↑, then {f > c} ∈O↑ for all c ∈ R.
(iv) If f ∈ U↑, then {f ≥ c} ∈ C↑ for all c ∈R.
(v) If U ⊂ E is open, then ↑U ∈O↑.

(vi) If A is upwards closed, then cl(A) is upwards closed.7

Proof. (i) Suppose that A ∈ O↑. We show that Ac is downwards closed. By contradiction, assume that Ac �= ↓(Ac), 
that is, there exists x ∈ ↓(Ac) such that x /∈ Ac (or equivalently x ∈ A). Since x ∈ ↓(Ac), there exists y ∈ Ac such 
that x ≤ y. Since x ∈ A and x ≤ y, it follows that y ∈ ↑A. By assumption ↑A = A, so that y ∈ A. But this is a 
contradiction to y ∈ Ac .

(ii) follows along the same line of argumentation as (i).
(iii) Fix f ∈ L↑. We prove that {f > c} is upwards closed. By contradiction, assume that x ≤ y for x ∈ {f > c}

and y /∈ {f > c}. Since x ∈ {f > c}, it follows that f (x) > c. Since y /∈ {f > c}, we have that f (y) ≤ c. Hence 
f (y) < f (x), in contradiction to f (x) ≤ f (y).

(iv) follows by similar arguments as in (iii).
(v) Let y ∈ ↑U , so that x ≤ y for some x ∈ U . Since U is open, there exists Ux ∈ Ux such that Ux ⊂ U . By 

Assumption 3.1, there exists Uy ∈ Uy such that Uy ⊂ ↑Ux ⊂ ↑U . This shows that ↑U is open.
(vi) Suppose that x ≤ y with x ∈ cl(A). We have to show that y ∈ cl(A). Fix Uy ∈ Uy . By Assumption 3.1 there 

exists Ux ∈ Ux such that Ux ⊂ ↓Uy . Since x is in the closure of A, there exists x̃ ∈ Ux ∩ A. Therefore, it follows that 
x̃ ∈ ↓Uy , which shows that there exists ỹ ∈ Uy with x̃ ≤ ỹ. Since ỹ ∈ ↑A = A, we conclude that Uy ∩ A �= ∅. �
3.2. Bounds for maxitive integrals

In accordance with Section 2, we next introduce the key concepts of this article. Let J be a concentration on 
OC↑ := O↑ ∪ C↑, i.e., a set function J : OC↑ → [−∞, 0] which satisfies J∅ = −∞, JE = 0, and JA ≤ JB whenever 
A ⊂ B . The respective maxitive integral φJ on LU↑ := L↑ ∪ U↑ is defined by

φJ (f ) :=

⎧⎪⎨
⎪⎩

sup
c∈R

{c + J{f >c}}, if f ∈ L↑,

sup
c∈R

{c + J{f ≥c}}, otherwise.
(3.1)

As discussed in the previous section, eJ is a capacity and φJ is a transformed version of the Shilkret integral; 
cf. Cattaneo [7]. Notice that φJ is well-defined due to Lemma 3.3. By considering the extended concentration 
J̄A := inf{JB : B ∈ OC↑, A ⊂ B} for all A ⊂ E, it follows by direct verification that for all f ∈ LU↑,

6 A function f : E → [−∞, ∞] is called increasing if f (x) ≤ f (y) whenever x ≤ y.
7 As usual, cl(A) denotes the topological closure of a subset A.
5
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φJ (f ) = sup
c∈R

{c + J̄{f ≥c}} = sup
c∈R

{c + J̄{f >c}}.

This shows that definition (3.1) is consistent with that in (2.7).8 The functional (3.1) shares the properties of a non-
linear expectation, i.e., it is constant preserving φJ (c) = c for all c ∈ R, and monotone φJ (f ) ≤ φJ (g) whenever 
f ≤ g. Also, the maxitive integral has the translation property φJ (f + c) = φJ (f ) + c for all c ∈ R.

Next, we show that the concentration can be recovered from the maxitive integral by the evaluation at indicator 
functions. We always make the convention that −∞ · 0 = 0, so that the indicator function −∞1Ac assumes the value 
−∞ on Ac and zero on A.

Proposition 3.4. Let J be a concentration. Then, for every A ∈OC↑,

JA = φJ (−∞1Ac) = inf
r<0

φJ (r1Ac).

Proof. Suppose, for instance, that A ∈O↑. Then, Ac ∈ C↓ due to Lemma 3.3, and therefore −∞1Ac ∈ L↑. We obtain

φJ (−∞1Ac) = sup
c∈R

{c + J{−∞1Ac>c}} = sup
0≤c

{c + J∅} ∨ sup
c<0

{c + JA} = JA.

Now, let r < 0, so that r1Ac ∈ L↑. Then,

φ(r1Ac) = sup
c∈R

{c + J{r1Ac>c}}

= sup
c<r

{c + J{r1Ac>c}} ∨ sup
r≤c<0

{c + J{r1Ac>c}} ∨ sup
0≤c

{c + J{r1Ac>c}}

= r ∨ JA ∨ (−∞) = r ∨ JA.

Hence, by letting r → −∞, we conclude inf
r<0

φJ (r1Ac) = JA. �
In accordance with Section 2, we say that a concentration J admits a rate function if there exists a function 

I : E → [0, ∞] such that JA = − infx∈A I (x) for all A ∈ OC↑. In that case, the concentration is completely maxitive 
in the sense that JA ≤ ∨i∈IJAi

for every family (Ai)i∈I ⊂ OC↑ and A ∈ OC↑ with A ⊂ ∪i∈IAi , and the maxitive 
integral φJ (f ) admits the representation supx∈E{f (x) − I (x)} for all f ∈ LU↑. In the following, we relax the relation 
between concentrations and rate functions. As a first main result, we obtain that the maxitive integral satisfies the 
following upper and lower bounds.

Theorem 3.5. Let J be a concentration and I : E → [0, ∞] be a function. Then, the following equivalences hold. 
First,

− inf
x∈O

I (x) ≤ JO for all O ∈O↑ (3.2)

if and only if

φJ (f ) ≥ sup
x∈E

{f (x) − I (x)} for all f ∈ L↑. (3.3)

Second,

JC ≤ − inf
x∈C

I (x) for all C ∈ C↑ (3.4)

if and only if

φJ (f ) ≤ sup
x∈E

{f (x) − I (x)} for all f ∈ U↑. (3.5)

Third,

8 In particular, for f ∈ L↑ ∩ U↑ , it follows that the two definitions in (3.1) coincide.
6
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JC ≤ − inf
x∈C

I (x) for all C ∈ C↑
c (3.6)

if and only if

φJ (f ) ≤ sup
x∈E

{f (x) − I (x)} for all f ∈ U↑
c . (3.7)

Proof. Suppose that inequality (3.2) holds. Let f ∈ L↑ and ε > 0. Using the definition of the maxitive integral φJ

and the inequality J{f>r} ≥ − infx∈{f >r} I (x) for all r ∈ R,

φJ (f ) ≥ sup
r∈R

{
r − inf

x∈{f >r} I (x)
}

= sup
r∈R

sup
x∈{f >r}

{r − I (x)}
≥ sup

x∈E

sup
y∈{f >f (x)−ε}

{f (x) − ε − I (y)}

≥ sup
x∈E

{f (x) − ε − I (x)}.

Since ε > 0 was arbitrary, we obtain φJ (f ) ≥ supx∈E{f (x) − I (x)}.
Conversely, suppose that inequality (3.3) holds. Let O ∈ O↑, so that −∞1Oc ∈ L↑. Then, by Proposition 3.4,

JO = φJ (−∞1Oc) ≥ sup
x∈E

{−∞1Oc(x) − I (x)} = − inf
x∈O

I (x).

Now, suppose that inequality (3.4) holds. Let f ∈ U↑. Using the definition of the maxitive integral φJ and the 
inequality J{f≥r} ≤ − infx∈{f ≥r} I (x) for all r ∈ R,

φJ (f ) ≤ sup
r∈R

{
r − inf

x∈{f ≥r} I (x)
}

= sup
r∈R

sup
x∈{f ≥r}

{r − I (x)}
≤ sup

r∈R
sup

x∈{f ≥r}
{f (x) − I (x)}

≤ sup
x∈E

{f (x) − I (x)}.

Conversely, suppose that inequality (3.5) holds. Let C ∈ C↑, so that −∞1Cc ∈ U↑. It follows from Proposition 3.4
that

JC = φJ (−∞1Cc) ≤ sup
x∈E

{−∞1Cc(x) − I (x)} = − inf
x∈C

I (x).

Finally, the equivalence between the inequalities (3.6) and (3.7) follows along the same line of argumentation by 
replacing C↑ by C↑

c and U↑ by U↑
c , respectively. �

Notice that the upper/lower bound in the previous result is specified by upper/lower semicontinuous functions. In 
the same spirit, in the context of the Hausdorff moment problem [22], the natural extension of the moment sequence 
is also determined by semicontinuous functions.

Given a concentration J , our goal now is to find a rate function I : E → [0, ∞] which satisfies the lower bound 
(3.2) and upper bounds (3.4) or (3.6). We first focus on the lower bound. From the previous theorem, we immediately 
see that

Imin(x) := sup
f ∈L↑

(f (x) − φJ (f )) for all x ∈ E

satisfies Imin(x) ≥ f (x) − φJ (f ) for all x ∈ E and f ∈ L↑, and therefore the inequalities (3.3) and (3.2). We refer to 
Imin as the minimal rate function. Notice that Imin is minimal in the class of functions I : E → [0, ∞] which satisfy 
7
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the inequalities (3.2) and (3.3).9 By definition, the function Imin is lower semicontinuous and increasing. Moreover, it 
is determined through the concentration function as follows.

Lemma 3.6. Let Imin be the minimal rate function associated to a concentration J . Then, for every x ∈ E,

−Imin(x) = inf
U∈Ux

J↑U .

Proof. Let x ∈ E and U ∈ Ux . By Lemma 3.3, we have (↑U)c ∈ C↓, and therefore −∞1(↑U)c ∈ L↑. Using the 
definition of the minimal rate function Imin and Proposition 3.4, we obtain Imin(x) ≥ −φJ (−∞1(↑U)c ) = −J↑U . 
Hence, by taking the supremum over all U ∈ Ux ,

Imin(x) ≥ − inf
U∈Ux

J↑U .

As for the other inequality, let f ∈ L↑ and ε > 0. Since f is lower semicontinuous, there exists U ∈ Ux such that 
f (z) ≥ f (x) − ε for all z ∈ U . In particular, f (z) ≥ f (x) − ε for all z ∈ ↑U because f is increasing. Then, by 
monotonicity and the translation property of φJ and Proposition 3.4,

φJ (f ) ≥ φJ ((f (x) − ε)1↑U − ∞1(↑U)c )

= f (x) − ε + φJ (−∞1(↑U)c )

= f (x) − ε + J↑U .

Since ε > 0 was arbitrary, we get φJ (f ) ≥ f (x) + J↑U ≥ f (x) + infU∈Ux
J↑U . This shows that for all f ∈ L↑,

inf
U∈Ux

J↑U ≤ −f (x) + φJ (f ).

By taking the infimum over all f ∈ L↑, we conclude inf
U∈Ux

J↑U ≤ −Imin(x). �
For the minimal rate function to satisfy the upper bound (3.4) or (3.6), additional assumptions on the concentration 

are required. We will see that the concentration must necessarily fulfill a certain form of maxitivity if the lower and 
upper bounds simultaneously hold. This is the context of the next subsection.

3.3. Weak maxitivity

As discussed in Section 2, a capacity which admits a possibility distribution in the sense of (2.4) (respectively a 
concentration which admits rate function) is completely maxitive. In case that inequality (2.2) is only assumed for 
sequences or finite sets, then the capacity is called countably maxitive or finitely maxitive, respectively. For a detailed 
discussion on different maxitivity concepts, we refer to [7]. In case that a concentration satisfies only upper and lower 
bounds, we obtain a weaker form of maxitivity.

Definition 3.7. A concentration function J is called weakly maxitive if

JA ≤ ∨n
i=1JBi

for all A ∈ C↑ and B1, . . . ,Bn ∈ O↑, n ∈N, such that A ⊂ ∪n
i=1Bi.

Likewise, a function φ : LU↑ → [−∞, ∞] is called weakly maxitive if

φ(f ) ≤ ∨n
i=1φ(gi) for all f ∈ U↑ and g1, . . . , gn ∈ L↑, n ∈ N, such that f ≤ ∨n

i=1gi.

As a direct consequence of Theorem 3.5, we obtain the following result.

9 In fact, if I : E → [0, ∞] is another function for which inequality (3.3) holds, then I (x) ≥ f (x) − φJ (f ) for all x ∈ E and f ∈ L↑, and 
therefore I (x) ≥ supf ∈L↑ (f (x) − φJ (f )) = Imin(x) for all x ∈ E.
8
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Proposition 3.8. Suppose that a concentration J satisfies the inequalities (3.2) and (3.4) for a function I : E →
[0, ∞]. Then, J and φJ are weakly maxitive.

Proof. Let A ∈ C↑ and B1, . . . , Bn ∈ O↑, n ∈ N , with A ⊂ ∪n
i=1Bi . Then, by monotonicity of J and the inequalities 

(3.4) and (3.2),

JA ≤ − inf
x∈A

I (x) ≤ − inf
x∈∪n

i=1Bi

I (x) = − ∧n
i=1 inf

x∈Bi

I (x) ≤ ∨n
i=1JBi

.

Furthermore, let f ∈ U↑ and g1, . . . , gn ∈ L↑, n ∈ N , with f ≤ ∨n
i=1gi . Then, it follows from Theorem 3.5 that

φJ (f ) ≤ sup
x∈E

{f (x) − I (x)}

≤ sup
x∈E

{∨n
i=1gi(x) − I (x)}

≤ ∨n
i=1sup

x∈E

{gi(x) − I (x)}

≤ ∨n
i=1φJ (gi). �

We now turn to the converse question and provide bounds for weakly maxitive concentrations. Thereby, we focus 
on the upper bound.

Proposition 3.9. Suppose that J is weakly maxitive. Then, J satisfies the upper bound (3.6) for the minimal rate 
function Imin.

Proof. Let C ∈ C↑
c . By definition, C ∈ C↑ and C = ↑K for some compact K ⊂ E. Fix ε > 0. Then, by Lemma 3.6

and compactness, there exist xi ∈ K and Ui ∈ Uxi
for i = 1, . . . , n such that K ⊂ ⋃n

i=1 Ui and

−J↑Ui
≥ (Imin(xi) − ε) ∧ ε−1 for all i = 1, . . . , n.

Consequently, since ↑Ui ∈O↑ for all i = 1, . . . , n due to Lemma 3.3, C ⊂ ⋃n
i=1 ↑Ui , and J is weakly maxitive,

−JC ≥ ∧n
i=1 − J↑Ui

≥ ∧n
i=1(Imin(xi) − ε) ∧ ε−1 ≥ ( inf

x∈K
Imin(x) − ε) ∧ ε−1.

Since ε > 0 was arbitrary, we obtain that

−JC ≥ inf
x∈K

Imin(x) = inf
x∈C

Imin(x),

where the last equality holds because Imin is increasing. �
For the minimal rate function to satisfy the stronger upper bound (3.4), we need an additional tightness assumption.

Definition 3.10. A concentration J is called tight, if for all C ∈ C↑ and ε > 0, there exists K ⊂ E compact with 
↑(C ∩ K) ∈ C↑

c such that

JC ≤ (
J↑(C∩K) + ε

) ∨ (−ε−1). (3.8)

Notice that C ∩ K is compact. In typical situations, ↑(C ∩ K) is closed, see Lemma A.2 in Appendix A.

Corollary 3.11. Let J be an weakly maxitive concentration which is tight. Then, J satisfies the upper bound (3.4)
with minimal rate function Imin.

Proof. Let C ∈ C↑ and ε > 0. Since J is tight, there exists K ⊂ E compact with ↑(C ∩ K) ∈ C↑
c such that inequality 

(3.8) holds. Hence, we can apply Proposition 3.9 to obtain
9



M. Kupper and J.M. Zapata Fuzzy Sets and Systems 467 (2023) 108506
JC ≤ (
J↑(C∩K) + ε

) ∨ (−ε−1) ≤
(

− inf
x∈↑(C∩K)

Imin(x) + ε

)
∨ (−ε−1)

≤
(

− inf
x∈C

Imin(x) + ε

)
∨ (−ε−1).

Since ε > 0 was arbitrary, we conclude that JC ≤ − infx∈C Imin(x). �
The results achieved so far can be summarized as follows. For a weakly maxitive concentration J there exists a 

function I : E → [0, ∞] such that

− inf
x∈O

I (x) ≤ JO and JC ≤ − inf
x∈C

I (x) (3.9)

for all O ∈ O↑ and C ∈ C↑
c , respectively C ∈ C↑ if the concentration is in addition tight. In this case, the respective 

maxitive integral is given by φJ (f ) = supx∈E(f (x) − I (x)) for all f ∈ L↑ ∩ U
↑
c and f ∈ L↑ ∩ U↑, respectively. 

Moreover, the function I can be replaced by the minimal rate function Imin. In other words, the class of weakly maxi-
tive concentrations (capacities) can be connected with a rate function (possibility distribution), which fully determines 
the associated maxitive integral for sufficiently regular functions. To what extent the rate function is unique will be 
discussed in Section 5, and how it can be determined by means of convex duality arguments in Section 6.

4. Representation of weakly maxitive non-linear expectations

As remarked in the previous section, the maxitive integral (3.1) has the same properties as a non-linear expectation 
which satisfies the translation property. In the following, we focus on the converse direction and investigate when a 
non-linear expectation with the translation property can be represented as a maxitive integral. To do so, the following 
continuity condition is necessary.

Lemma 4.1. For every f ∈ LU↑,

lim
N→∞φJ (f ∧ N) = φJ (f ) and lim

N→∞φJ (f ∨ (−N)) = φJ (f ).

Proof. Let f ∈ L↑, the other case follows with similar arguments. By definition of the maxitive integral, for each 
N ∈ N ,

φJ (f ∧ N) = sup
c∈R

{c + J{(f ∧N)>c}} = sup
c<N

{c + J{f >c}} ∨ sup
N≤c

{c + J∅} = sup
c<N

{c + J{f >c}},

and therefore,

lim
N→∞φJ (f ∧ N) = sup

N∈N
φJ (f ∧ N) = sup

N∈N
sup
c<N

{c + J{f >c}} = sup
c∈R

{c + J{f >c}} = φJ (f ).

As for the second statement, for each N ∈ N ,

φ(f ∨ (−N)) = sup
c∈R

{c + J{f ∨(−N)>c}}

= sup
c<−N

{c + J{f ∨(−N)>c}} ∨ sup
−N≤c

{c + J{f ∨(−N)>c}}

= sup
c<−N

{c + JE} ∨ sup
−N≤c

{c + J{f >c}}

≤ (−N) ∨ sup
c∈R

{c + J{f >c}}

= (−N) ∨ φJ (f ).

Hence, by monotonicity of φJ ,

φJ (f ) ≤ lim φJ (f ∨ (−N)) ≤ lim (−N) ∨ φJ (f ) = φJ (f ). �

N→∞ N→∞

10
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As shown in [7, Corollary 6], every finitely maxitive non-linear expectation with the translation property admits 
a representation in terms of a maxitive integral; see also [7, Corollary 7] and [20, Proposition 2.2]. We next provide 
a related representation result for weakly maxitive non-linear expectations. Let L

↑
, U

↑
, and LU

↑
denote the sets of 

all functions in L↑, U↑, and LU↑, respectively, which are bounded from above. Moreover, let C↑
b be the space of all 

increasing bounded continuous functions f : E →R.

Theorem 4.2. Suppose that ψ : LU
↑ → [−∞, ∞) satisfies

(i) ψ(0) = 0,
(ii) ψ(f ) ≤ ψ(g) whenever f ≤ g,

(iii) ψ(f + c) = ψ(f ) + c for all c ∈ R,

with concentration Jψ
A := ψ(−∞1Ac) for all A ∈OC↑. If ψ is weakly maxitive,10 then

ψ(f ) = φJψ (f ) for all f ∈ L
↑ ∩ U

↑
.

Proof. First, suppose that f ∈ C
↑
b and let a, b ∈ R such that a < f (x) < b for all x ∈ E. Fix N ∈ N , and define for 

0 ≤ j ≤ N − 1,

aN,j := a + j
b − a

N
, ON,j = {f > aN,j }, and CN,j = {f ≥ aN,j }.

We consider the simple functions

lN := ∨N−1
j=0

( − ∞1Oc
N,j

+ aN,j 1ON,j

)
and uN := ∨N−1

j=0

( − ∞1Cc
N,j

+ aN,j 1CN,j

)
.

By construction, it holds lN ∈ L
↑

, uN ∈ U
↑

, and f − b−a
N

≤ lN ≤ uN ≤ f . Using the definition of the maxitive integral 
and the translation property of ψ ,

φJψ (lN ) = ∨N−1
j=0 {aN,j + J

ψ
ON,j

}
= ∨N−1

j=0 ψ
( − ∞1Oc

N,j
+ aN,j 1ON,j

)
≤ ψ(lN).

Moreover, it follows from

uN ≤ lN + b − a

N
= ∨N−1

j=0

( − ∞1Oc
N,j

+ (
aN,j + b−a

N

)
1ON,j

)
,

and the weak maxitivity of ψ that

ψ(uN) ≤ ∨N−1
j=0 ψ

(
− ∞1Oc

N,j
+ (

aN,j + b−a
N

)
1ON,j

)

= b−a
N

+ ∨N−1
j=0 ψ

( − ∞1Oc
N,j

+ aN,j 1ON,j

)
= b−a

N
+ φJψ (lN ).

In combination with φJψ (lN ) ≤ ψ(lN) ≤ ψ(uN), we obtain

|ψ(uN) − φJψ (lN )| ≤ b−a
N

.

Hence, as a consequence of the monotonicity and translation property of ψ and φJψ ,

|ψ(f ) − φJψ (f )| ≤ |ψ(f ) − ψ(uN)| + |ψ(uN) − φJψ (lN )| + |φJψ (lN ) − φJψ (f )|
≤ b−a

N
+ b−a

N
+ b−a

N
.

10 I.e., φ(f ) ≤ ∨n
i=1φ(gi ) for all f ∈ U

↑
and g1, . . . , gn ∈ L

↑
, n ∈N , such that f ≤ ∨n

i=1gi .
11



M. Kupper and J.M. Zapata Fuzzy Sets and Systems 467 (2023) 108506
Letting N → ∞ results in ψ(f ) = φJψ (f ) as desired.

Second, suppose that f ∈ L
↑ ∩ U

↑
. Let N ∈ N , so that f ∨ (−N) ∈ C

↑
b , and therefore ψ(f ∨ (−N)) = φJψ (f ∨

(−N)) due to the previous step. Moreover, since ψ is weakly maxitive,

ψ(f ) ≤ ψ(f ∨ (−N)) ≤ ψ(f ) ∨ (−N).

Hence, it follows from Lemma 4.1 that

φJψ (f ) = lim
N→∞φJψ (f ∨ (−N)) = lim

N→∞ψ(f ∨ (−N)) = ψ(f ). �
Remark 4.3. A weakly maxitive non-linear expectation with the translation property is fully determined on increasing 
continuous bounded functions by its restriction to the indicators −∞1Ac for A ∈ OC↑. Indeed, let ψ1, ψ2 : LU

↑ →
[−∞, ∞) be weakly maxitive non-linear expectations with the translation property. If ψ1(−∞1Ac) = ψ2(−∞1Ac)

for all A ∈OC↑, then Theorem 4.2 implies ψ1(f ) = ψ2(f ) for all f ∈ L
↑ ∩ U

↑
.

5. A Laplace principle for maxitive integrals

Theorem 4.2 allows to represent weakly maxitive non-linear expectations with the translation property in terms of 
a maxitive integral φJ . In order to find a computable representation of the minimal rate function Imin, we aim to find 
conditions which guarantee that Imin is attained on certain spaces of bounded functions. More specifically, under an 
additional separation property, we focus on representations of the form

Imin(x) = sup
f ∈C

↑
b

{f (x) − φJ (f )}.

We also investigate the relation between the bounds (3.9) and a Laplace principle for general concentrations. Through-
out this section, let (E, ≤) be a topological preordered space. We fix a base U for the topology of E, and set 
Ux := {U ∈ U : x ∈ U} for all x ∈ E. Additionally to Assumption 3.1, we require the following separation property.

Assumption 5.1. For every A ∈ C↑ and x /∈ A, there exists an increasing continuous function f : E → [0, 1] which 
satisfies

f (x) = 0 and A ⊂ f −1(1).

Similarly, for every A ∈ C↓ and x /∈ A, there exists an increasing continuous function f : E → [0, 1] such that A ⊂
f −1(0) and f (x) = 1.

Remark 5.2. If the preorder ≤ is trivial, then the previous assumption corresponds to that of complete regularity. Both 
metric spaces, and Hausdorff topological abelian groups are completely regular topological spaces and thus satisfy 
Assumption 5.1 for the trivial preorder. Moreover, we show in Theorem A.1 in Appendix A that every preordered 
Hausdorff topological abelian group (E, ≤) as in Remark 3.2 satisfies Assumption 3.1 and Assumption 5.1.

Under Assumption 5.1, the following holds.

Lemma 5.3. For any O ∈O↑ and x ∈ O , there exists U ∈ Ux such that cl(↑U) ⊂ O .

Proof. Fix O ∈ O↑ and x ∈ O . Due to Lemma 3.3, we have that Oc ∈ C↓. By Assumption 5.1, there exists an 
increasing continuous function f : E → [0, 1] such that Oc ⊂ f −1(0) and f (x) = 1. Since x ∈ {f > 1/2}, there 
exists U ∈ Ux , which satisfies U ⊂ {f > 1/2}. Then, since {f > 1/2} is upwards closed, we have ↑U ⊂ {f > 1/2}. 
Hence, x ∈ ↑U ⊂ cl(↑U) ⊂ {f ≥ 1/2} ⊂ O . The proof is complete. �

The previous result allows for a better description of the minimal rate function.
12
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Lemma 5.4. Let J be a concentration function with minimal rate function Imin. Then, for every x ∈ E,

Imin(x) = sup
f ∈C

↑
b

{f (x) − φJ (f )} = − inf
U∈Ux

J↑U = − inf
U∈Ux

Jcl(↑U).

Proof. Let x ∈ E. By Lemma 3.6 and Lemma 5.3,

sup
f ∈C

↑
b

{f (x) − φJ (f )} ≤ Imin(x) = − inf
U∈Ux

J↑U = − inf
U∈Ux

Jcl(↑U).

Recall that cl(↑U) ∈ C↑ due to Lemma 3.3. Let V ∈ Ux and r < 0. It follows from Lemma 3.3 that (↑V )c ∈ C↓. 
Hence, due to Assumption 5.1, there exists an increasing continuous function fU,r : E → [r, 0] with (↑U)c ⊂ f −1

U,r (r)

and fU,r (x) = 0. Then, we have

sup
f ∈C

↑
b

{f (x) − φJ (f )} ≥ −φJ (fU,r ) ≥ −φJ (r1(↑U)c ).

Letting r → −∞ and using Proposition 3.4, we see that sup
f ∈C

↑
b

{f (x) − φJ (f )} ≥ −J↑U . If we take the supremum 

over all U ∈ Ux , we conclude

− inf
U∈Ux

J↑U ≤ sup
f ∈C

↑
b

{f (x) − φJ (f )}. �

Motivated by the theory of large deviations and in accordance with the inequalities (3.9), we introduce the following 
concepts.

Definition 5.5. Let I : E → [0, ∞] be a function. A concentration J is said to satisfy the monotone large deviation 
principle (mLDP) with rate function I if

− inf
x∈O

I (x) ≤ JO and JC ≤ − inf
x∈C

I (x) (5.1)

for every O ∈ O↑ and all C ∈ C↑. Moreover, a concentration J is said to satisfy the monotone Laplace principle
(mLP) with rate function I if the maxitive integral φJ has the representation

φJ (f ) = sup
x∈E

{f (x) − I (x)} for all f ∈ C
↑
b . (5.2)

The mLDP is equivalent to the bounds (3.2) and (3.4). On the other hand, while the bounds (3.3) and (3.5) imply 
the mLP, the converse assertion is not necessarily true. For a concentration J which satisfies either the mLDP or 
mLP with rate function I , it follows from JE = 0 or equivalently φJ (0) = 0, that I is proper, i.e., I (x) ∈ [0, ∞) for 
some x ∈ E. We do not require that rate functions are lower semicontinuous.11 However, we show that the mLDP 
uniquely determines the rate function within the class of increasing lower semicontinuous functions. For a function 
f : E → [−∞, ∞], we define its increasing lower semicontinuous envelope f ↑ : E → [−∞, ∞] by

f ↑(x) := sup
{
g(x) : g ∈ L↑, g ≤ f

}
.

Directly from the definition, we see that f ↑ is the greatest increasing lower semicontinuous function g : E →
[−∞, ∞] which satisfies that g ≤ f .

Proposition 5.6. Let J be a concentration and I : E → [0, ∞] be a function.

(i) If JC ≤ − infx∈C I (x) for every C ∈ C↑, then I↑ ≤ Imin.
(ii) If − infx∈O I (x) ≤ JO for every O ∈O↑, then Imin ≤ I↑.

11 In the theory of large deviations, it is typically assumed that a rate function is lower semicontinuous and proper; see e.g. [5].
13
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In particular, if J satisfies the mLDP with rate function I being increasing and lower semicontinuous, then I = Imin.

Proof. First, we assume that JC ≤ − infx∈C I (x) for all C ∈ C↑. Since I↑ ≤ I ,

JC ≤ − inf
x∈C

I (x) ≤ − inf
x∈C

I↑(x) for all C ∈ C↑.

Let x ∈ E. We apply the previous inequality and the fact that I↑ is lower semicontinuous and increasing to show that

I↑(x) = sup
U∈Ux

inf
y∈U

I↑(y) = sup
U∈Ux

inf
y∈↑U

I↑(y) = sup
U∈Ux

inf
y∈cl(↑U)

I↑(y) ≤ − inf
U∈Ux

Jcl(↑U) = Imin(x),

where in the first equality we used that I↑ is lower semicontinuous, in the second equality that I↑ is increasing, the 
third equality is a consequence of Lemma 5.3, and the last equality follows from Lemma 5.4.

Second, we assume that − infx∈O I (x) ≤ JO for every O ∈ O↑. Then, it follows from Lemma 5.4 that for every 
x ∈ E,

Imin(x) = − inf
U∈Ux

J↑U = sup
U∈Ux

(−J↑U) ≤ sup
U∈Ux

inf
y∈↑U

I (y) ≤ I (x),

where we have used that ↑U ∈O↑. This shows Imin ≤ I . Moreover, since Imin is increasing and lower semicontinuous, 
it follows that Imin ≤ I↑.

In particular, if J satisfies the mLDP with an increasing lower semicontinuous rate function I , then I = I↑, so that 
conditions (i) and (ii) imply that Imin ≤ I ≤ Imin. �

It follows from Theorem 3.5 that the mLDP implies the mLP. The converse implication is more involved. As shown 
in the following main result, if the space is monotonically normal or the rate function has downwards compactly 
generated sublevel sets, then the mLP implies the mLDP.

Theorem 5.7. Let I : E → [0, ∞] be an increasing lower semicontinuous function, and suppose that one of the 
following conditions is satisfied:

(i) E is monotonically normal,12 if for every A ∈ C↓ and B ∈ C↑ with A ∩ B = ∅ there exist U ∈ O↓ and V ∈ O↑
with U ∩ V = ∅ such that A ⊂ U and B ⊂ V .

(ii) I has downwards compactly generated sublevel sets, i.e., if for every α ∈ R there exists a compact set Kα such 
that {I ≤ α} = ↓Kα .

Then, J satisfies the mLP with rate function I if and only if J satisfies the mLDP with rate function I . In that case, 
I = Imin.

Proof. If J satisfies the mLDP with increasing rate function I , then it follows from Theorem 3.5 that J satisfies the 
mLP with rate function I . Moreover, Proposition 5.6 ensures that I = Imin.

Conversely, suppose that the mLP with rate function I holds. Fix A ∈ C↑. We first show that JA ≤ − infx∈A I (x). If 
infx∈A I (x) = 0, then the assertion trivially holds as JA ≤ 0. Thus, assume that infx∈A I (x) > δ for some δ > 0 small 
enough. Define

I δ(x) := (I (x) − δ) ∧ δ−1 for x ∈ E.

Next, we show that

JA ≤ −α, (5.3)

where α := infx∈A Iδ(x) ∈ (0, ∞). Since − infx∈E I (x) = φJ (0) = 0, it follows that {I ≤ α} is non-empty. Moreover, 
{I ≤ α} ∈ C↓ as I is increasing and lower semicontinuous. In addition, it holds {I ≤ α} ∩ A = ∅.

12 This notion is due to Nachbin [25] where the term ‘normally ordered space’ is used in the context of an ordered set. The term ‘monotonically 
normal’ is also used in the literature for preordered sets; cf. e.g., [3,29].
14
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Suppose first that E is monotonically normal. It follows from [25, Theorem 2] that for each m ∈N , there exists an 
increasing continuous function hm : E → [−m, 0] such that {I ≤ α} ⊂ h−1

m (−m) and A ⊂ h−1
m (0).13 For each m ∈N ,

JA = inf
r∈R

φJ (r1Ac) ≤ φJ (hm) = − inf
x∈S

{−hm(x) + I (x)}.
Since −hm(x) + I (x) ≥ m if x ∈ {I ≤ α}, and −hm(x) + I (x) ≥ α if x /∈ {I ≤ α}, by choosing m ≥ α, we obtain 
inequality (5.3).

Suppose now that I has downwards compactly generated sublevel sets. In that case, {I ≤ α} = ↓Kα for a com-
pact set Kα ⊂ E. Since A ∩ Kα = ∅, by Assumption 5.1, for every y ∈ Kα there exists an increasing continuous 
function fy : E → [−1, 0] such that fy(y) = −1 and A ⊂ f −1

y (0). The neighborhoods Vy := {fy < − 1
2 } cover the 

compact set Kα . Hence, we can find y1, . . . , yN ∈ Kα such that Kα ⊂ ⋃
1≤i≤N Vyi

. For each m ∈ N , we define 
hm := ∧1≤i≤N 2mfyi

. Then, hm is increasing, continuous and bounded, A ⊂ h−1
m (0) and hm(x) ≤ −m for all x ∈ Kα . 

Moreover, since hm is increasing, it follows that hm(x) ≤ −m for all x ∈ {I ≤ α} = ↓Kα . Finally, with the same 
arguments as in the previous case, we obtain inequality (5.3).

In both cases, inequality (5.3) holds for all δ > 0 small enough, so that

JA ≤ − lim
δ↓0

inf
x∈A

Iδ(x) = − lim
δ↓0

(
( inf
x∈A

I (x) − δ) ∧ δ−1
)

= − inf
x∈A

I (x).

Hence, J satisfies the upper bound of the mLDP with increasing rate function I . By Proposition 5.6, we obtain 
Imin ≥ I . On the other hand, it follows from the representation (5.2) that Imin ≤ I , and therefore I = Imin. Finally, it 
follows from Theorem 3.5 that J satisfies the lower bound of the mLDP with rate function I = Imin. �
Remark 5.8. If the preorder ≤ is trivial, then the notion of monotonical normality corresponds to normality. Examples 
of normal spaces include metrizable spaces, and regular Lindelöf spaces; see e.g. [17].

In case that ≤ is a closed preorder,14 it is shown in [21] that E is monotonically normal whenever E is second 
countable and locally compact. This is the case, for example, when E is a (second countable) topological manifold 
equipped with a closed preorder. Further examples of monotonically normal spaces can be found in [4,21].

In case that E = R is the real line, then every increasing lower semicontinuous function I : E → [0, ∞) satisfies 
that {I ≤ α} = (−∞, I (α)] = ↓{I (α)}, and has therefore compactly generated sublevel sets.

6. Convex rate functions

The explicit determination of the rate function is generally a difficult task. However, in the particular case where the 
rate function is convex, one can rely on convex duality arguments. Throughout this section, let E be a locally convex 
Hausdorff topological real vector space. Moreover, let E+ ⊂ E be a convex cone, i.e., E+ + E+ ⊂ E+, λE+ ⊂ E+
for all λ > 0 and 0 ∈ E+. We endow E with the preorder induced by E+, i.e., x ≤ y if and only if y − x ∈ E+. Then, 
the assumptions of Section 5 are satisfied as outlined in Remark 5.2. Let U be a base for the topology of E, and define 
Ux := {U ∈ U : x ∈ U} for all x ∈ E. We first provide a condition which ensures that the minimal rate function is 
convex.

Lemma 6.1. Let J be a concentration such that

J 1
2 ↑U+ 1

2 ↑V
≥ 1

2J↑U + 1
2J↑V for all U,V ∈ U .

Then, the minimal rate function Imin : E → [0, ∞] is convex.

Proof. Fix x, y ∈ E and ε > 0. Set z := 1
2x + 1

2y. Due to Lemma 5.4, there exists W ∈ Uz such that

−J↑W ≥ (Imin(z) − ε) ∧ ε−1.

13 [25, Theorem 2] is formulated for ordered topological spaces rather than preordered topological spaces. However, since in the proof the 
antisymmetry is not used, the result applies also to preordered topological spaces.
14 I.e., {(x, y) : x ≤ y} is closed.
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Since O := {(x̃, ỹ) ∈ E × E : 1
2 x̃ + 1

2 ỹ ∈ W } is open, there exist U ∈ Ux and V ∈ Uy such that 1
2U + 1

2V ⊂ W . Then,

−[(Imin(z) − ε) ∧ ε−1] ≥ J↑W ≥ J 1
2 ↑U+ 1

2 ↑V
≥ 1

2
J↑U + 1

2
J↑V .

Taking the infimum over all U ∈ Ux and then over all V ∈ Uy ,

(Imin(z) − ε) ∧ ε−1 ≤ 1

2
Imin(x) + 1

2
Imin(y).

Therefore, since ε > 0 was arbitrary, we obtain

Imin(z) ≤ 1

2
Imin(x) + 1

2
Imin(y).

Now, consider the set D := {k2−n : n, k ∈N, k ≤ 2n} of all dyadic rational numbers in the interval [0, 1]. By recursion, 
it can be shown that

Imin(z) ≤ λImin(x) + (1 − λ)Imin(y),

for every λ ∈D. As a consequence, since the map [0, 1] → [0, ∞], λ �→ Imin(λx + (1 −λ)y) is lower semicontinuous 
and the set D is dense in [0, 1], the previous inequality is valid for all λ ∈ [0, 1]. �

Let E∗ be the topological dual space of E. We denote by E∗+ the set of all μ ∈ E∗ which are positive, i.e., μ(x) ≥ 0
for all x ∈ E+. The convex conjugate of the minimal rate function Imin is defined by I ∗

min(μ) := supx∈E{μ(x) −
Imin(x)} for all μ ∈ E∗.

Proposition 6.2. Let J be a concentration. Suppose that the minimal rate function Imin is convex and I ∗
min(μ) ≥ φJ (μ)

for all μ ∈ E∗+. Then,

Imin(x) = sup
μ∈E∗+

{μ(x) − φJ (μ)} for all x ∈ E. (6.1)

Proof. The minimal rate function Imin is lower semicontinuous and increasing. By the Fenchel-Moreau theorem [13, 
Theorem A.62],

Imin(x) = sup
μ∈E∗

{μ(x) − I ∗
min(μ)}

= sup
μ∈E∗+

{μ(x) − I ∗
min(μ)} for all x ∈ E.

The second equality holds because I ∗
min(μ) = ∞ whenever μ ∈ E∗ \ E∗+. In fact, for μ ∈ E∗ \ E∗+ there exists y ≤ 0

with μ(y) > 0, and therefore

I ∗
min(μ) ≥ sup

λ>0
{μ(x + λy) − Imin(x + λy)}

≥ sup
λ>0

{μ(x) + λμ(y) − Imin(x)} = ∞.

Finally, using the definition of Imin and the inequality I ∗
min(μ) ≥ φJ (μ) for all μ ∈ E∗+,

Imin(x) = sup
f ∈L↑

{f (x) − φJ (f )} ≥ sup
μ∈E∗+

{μ(x) − φJ (μ)} ≥ Imin(x). �

The hypothesis of Proposition 6.2 can be verified in some important situations; e.g., for the asymptotic concentra-
tion of sample means of i.i.d. sequences, see Subsection 7.2. In particular, it is satisfied under the mLDP, which leads 
to the following result.
16
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Corollary 6.3. Let J be a concentration which satisfies the mLDP with a rate function I : E → [0, ∞] which is 
convex, increasing and lower semicontinuous. Then,

I (x) = sup
μ∈E∗+

{μ(x) − φJ (μ)} for all x ∈ E.

Proof. By Proposition 5.6, it holds I = Imin. Moreover, it follows from Theorem 3.5 that φJ (μ) = I ∗
min(μ) for all 

μ ∈ E∗+. Consequently, since I = Imin is convex, the claim follows from Proposition 6.2. �
7. Examples

We illustrate the theoretical results with two examples. First, we study the asymptotic behavior of a sequence 
(μn)n∈N of capacities by considering the weakly maxitive concentration JA := lim supn→∞ 1

n
logμn(A). Large devi-

ations bounds for sequences of capacities on Rd were recently considered in [8,31]. Second, we focus on the role of 
the partial order by elaborating a monotone version of Cramér’s theorem for which the rate function can be determined 
explicitly.

7.1. Asymptotic concentration of capacities

Let (E, ≤) be a topological preordered space which satisfies Assumption 3.1. We denote by B the set of all Borel 
measurable functions f : E → [−∞, ∞) which are bounded from above. In the following, let (En)n∈N be a sequence 
of sublinear expectations on B, i.e., for each n ∈N , the functional En : B → [−∞, ∞) satisfies

(i) En(f ) ≤ En(g) whenever f ≤ g,
(ii) En(f + g) ≤ En(f ) + En(g),
(iii) En(f + c) = En(f ) + c for all c ∈R,
(iv) En(λf ) = λEn(f ) for all λ ∈ [0, ∞).

A functional which satisfies the properties (i)-(iv) is also called upper expectation in robust statistics [15], coherent 
risk measure in mathematical finance [2], or upper coherent prevision in the theory of imprecise probabilities [32]. 
We remark that the theory of upper previsions does not make any measurability assumption, and in that context it 
is known that the conditions (i) and (iii) follow from the conditions (ii) and (iv) together with En(f ) ≤ supf ; see, 
e.g., [23,32].

Example 7.1. Let (Xn)n∈N be a sequence of E-valued random variables defined on a probability space (�, F , P ). 
Consider a non-empty set P of probability measures on F . Then, for each n, the upper prevision En(f ) =
supP∈P EP [f (Xn)] satisfies the properties (i)–(iv) above. �

We consider the set function

J : OC↑ → [−∞,0], JA := lim sup
n→∞

1
n

logμn(A),

where μn denotes the corresponding capacity of En, which is defined by μn(A) := En(1A) for all Borel sets A ⊂ E. 
Straightforward verification shows that each μn satisfies μn(∅) = 0, μn(E) = 1, μn(A) ≤ μn(B) whenever A ⊂ B , 
and μn(A) ≤ μn(B) + μn(C) whenever A ⊂ B ∪ C. Moreover, J is a concentration which turns out to be weakly 
maxitive according to the principle of the largest term.15

Lemma 7.2. The concentration J is weakly maxitive.

15 The principle of the largest term is a result which is often used in the theory of large deviations; see, e.g., [27, Proposition 12.3] and [5, Lemma 
1.2.15]. Namely, if (a1

n)n∈N , . . . , (aN
n )n∈N are [0, ∞]-valued sequences, then lim supn→∞ 1

n log
∑N

i=1 ai
n = ∨N

i=1 lim supn→∞ 1
n logai

n.
17
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Proof. Let C ∈ C↑ and O1, O2, . . . , ON ∈ O↑ such that C ⊂ ∪N
i=1O1, and therefore μn(C) ≤ ∑N

i=1 μn(Oi). Apply-
ing the principle of the largest term,

JC ≤ lim sup
n→∞

1
n

log
N∑

i=1

μn(Oi) ≤ ∨N
i=1 lim sup

n→∞
1
n

logμn(Oi) = ∨N
i=1JOi

. �

In particular, the results of Section 3 are applicable. Due to Lemma 3.6, the minimal rate function is given by

Imin(x) = − sup
U∈Ux

lim sup
n→∞

1
n

logμn (↑U) for all x ∈ E.

As an application of Theorem 3.5, the discussion thereafter, and Proposition 3.9, we obtain

− inf
x∈O

Imin(x) ≤ JO and JC ≤ − inf
x∈C

Imin(x) (7.1)

for all O ∈ O↑ and C ∈ C↑
c , and consequently the respective bounds in Theorem 3.5 for the maxitive integral φJ . 

Building on Theorem 4.2 and Remark 4.3, the maxitive integral φJ has the following representation in terms of a 
sequence of Choquet integrals.

Proposition 7.3. For every f ∈ L
↑ ∩ U

↑
,

φJ (f ) = lim sup
n→∞

1
n

logEn(exp(nf )) = lim sup
n→∞

1
n

log

∞∫
0

μn (exp(nf ) > x)dx. (7.2)

Proof. Define ψ : LU
↑ → [−∞, ∞) as the right hand side of (7.2). Inspection shows that ψ satisfies properties (i)-

(iii) in Theorem 4.2. Next, we show that ψ is weakly maxitive. To that end, let f ∈ U
↑

, g1, g2, . . . , gN ∈ L
↑

, and 
f ≤ ∨N

i=1g1. Then, by the principle of the largest term,

ψ(f ) ≤ lim sup
n→∞

1
n

log

∞∫
0

μn

(
exp

(
n(∨N

i=1gi)
)

> x
)

dx

= lim sup
n→∞

1
n

log

∞∫
0

μn

(
∪N

i=1{exp(ngi) > x}
)

dx

≤ lim sup
n→∞

1
n

log
N∑

i=1

∞∫
0

μn (exp(ngi) > x)dx

≤ ∨N
i=1 lim sup

n→∞
1
n

log

⎛
⎝

∞∫
0

μn (exp(ngi) > x)dx

⎞
⎠

= ∨N
i=1ψ(gi),

which shows that ψ is weakly maxitive. Moreover, for A ∈OC↑,

ψ(−∞1Ac) = lim sup
n→∞

1
n

log

∞∫
0

μn (exp(n(−∞)1Ac) > x)dx

= lim sup
n→∞

1
n

log

∞∫
μn (1A > x)dx
0

18
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= lim sup
n→∞

1
n

log

1∫
0

μn (A)dx

= lim sup
n→∞

1
n

logμn (A)

= JA.

Hence, Jψ = J and we can apply Theorem 4.2 to conclude ψ = φJ .
In a second step, we define

ψ̃ : LU
↑ → [−∞,∞), ψ̃(f ) := lim sup

n→∞
1
n

logEn

(
exp(nf )

)
.

Direct verification shows that ψ̃ satisfies properties (i)-(iii) in Theorem 4.2. Moreover, it is weakly maxitive. Indeed, 
let f ∈ U

↑
and g1, g2, . . . , gN ∈ L

↑
such that f ≤ ∨N

i=1g1. Again, by the principle of the largest term,

ψ̃(f ) ≤ lim sup
n→∞

1

n
logEn

(
en(∨N

i=1gi )
)

≤ lim sup
n→∞

1

n
log

N∑
i=1

En

(
engi

)

≤ ∨N
i=1lim sup

n→∞
1

n
logEn

(
engi

)

= ∨N
i=1ψ̃(gi).

Since JA = ψ̃(−∞1Ac) for all A ∈ OC↑, it follows from Theorem 4.2 that ψ̃ = φJ . Together with the first part, we 
obtain equality (7.3). �

In contrast to linear expectations in standard probability theory, a sublinear expectation E is in general not de-
termined by its associated capacity μ(A) = E(1A); see, e.g., [26]. In other words, the sublinear expectation E may 
contain more information than the capacity μ. However, Proposition 7.3 implies that the asymptotic entropic version 
lim supn→∞ 1

n
logEn(exp(nf )) is fully specified through the sequence of capacities (μn)n∈N by means of the right 

hand side of equation (7.2).
Under the assumptions of Theorem 5.7, it follows that φJ satisfies the mLP with rate function I if and only if J

satisfies the mLDP with rate function I . Under a slightly stronger version of the mLDP, the limit superior in (7.2) can 
even be replaced by a limit. More precisely, we obtain the equivalence between the following versions of the classical 
large deviation principle and the Laplace principle.

Corollary 7.4. Suppose that (E, ≤) satisfies Assumption 3.1 and Assumption 5.1. Let I : E → [0, ∞] be an increasing 
lower semicontinuous function. If (μn)n∈N satisfies

− inf
x∈O

I (x) ≤ lim inf
n→∞

1
n

logμn(O) and lim sup
n→∞

1
n

logμn(C) ≤ − inf
x∈C

I (x) (7.3)

for all O ∈ O↑ and C ∈ C↑, then (En)n∈N satisfies

lim
n→∞

1
n

logEn(exp(nf )) = sup
x∈E

{f (x) − I (x)} (7.4)

for all f ∈ C
↑
b . The converse assertion holds true if E is monotonically normal or I has compactly generated sublevel 

sets.

Proof. Let f ∈ C
↑
b . It follows from Theorem 3.5 that

φJ (f ) = lim sup 1
n

logEn(exp(nf )) = sup{f (x) − I (x)}.

n→∞ x∈E
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To show that the previous limit superior is a limit, we define

φ(f ) := lim inf
n→∞

1
n

logEn(exp(nf )).

Fix ε > 0 and x ∈ E. Since f is upper semicontinuous and increasing, there exists U ∈ O↑ with x ∈ U such that 
infy∈U f (y) ≥ f (x) − ε. Then,

φ(f ) ≥ φ(f 1U − ∞1Uc)

= f (x) − ε + φ(−∞1Uc)

= f (x) − ε + lim inf
n→∞

1
n

logμn(U)

≥ f (x) − ε − inf
y∈U

I (y)

≥ f (x) − ε − I (x).

Letting ε ↓ 0 and taking the supremum over all x ∈ E yields

sup
x∈E

{f (x) − I (x)} ≤ φ(f ) ≤ φJ (f ) = sup
x∈E

{f (x) − I (x)}.

As for the converse assertion, suppose that E is monotonically normal or I has compactly generated sublevel sets. By 
Theorem 5.7,

lim sup
n→∞

1
n

logμn(C) = JC ≤ − inf
x∈C

I (x) for all C ∈ C↑.

To show the lower bound, fix O ∈ O↑. Let x ∈ O and m ∈ N . By Lemma 3.3, it holds Oc ∈ C↓. Hence, due to 
Assumption 5.1, there exists fm ∈ C

↑
b such that fm(x) = 0, Oc ⊂ f −1

m (−m), and −m ≤ f (y) ≤ 0 for all y ∈ E. We 
obtain

lim inf
n→∞

1
n

logμn(O) ∨ (−m) = lim inf
n→∞

1
n

logE
(

exp(n(−∞1Oc))
) ∨ (−m)

≥ lim inf
n→∞

1
n

logE
(

exp(n((−∞1Oc) ∨ (−m))
)

≥ φ(fm) = φJ (fm) ≥ fm(x) − I (x) = −I (x).

By letting m → ∞ and taking the supremum over all x ∈ O ,

lim inf
n→∞

1
n

logμn(O) ≥ − inf
x∈O

I (x). �
7.2. Sample means of i.i.d. sequences

Let E be a locally convex Hausdorff topological real vector space endowed with a preorder induced by a closed 
convex cone E+ ⊂ E. Then, the assumptions of Section 5 are satisfied as outlined in Remark 5.2.

For each n ∈ N , let Xn := 1
n

∑n
i=1 ξi be the sample mean of an i.i.d. sequence (ξn)n∈N of E-valued ran-

dom variables defined on a probability space (�, F , P ). For A ∈ OC↑, we define the concentration JA =
lim supn→∞ 1

n
logP (Xn ∈ A) with minimal rate function Imin. Due to Proposition 7.3, the concentration J is weakly 

maxitive and its maxitive integral admits the representation

φJ (f ) = lim sup
n→∞

1
n

logEP [exp(nf (Xn))] for all f ∈ L
↑ ∩ U

↑
. (7.5)

Lemma 7.5. For every convex set A ∈OC↑,

JA = sup
n∈N

1
n

logP (Xn ∈ A). (7.6)

Moreover, for every convex set O ∈ O↑,

JO = lim
n→∞

1
n

logP (Xn ∈ O) = sup 1
n

logP (Xn ∈ O). (7.7)

n∈N
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Proof. The equalities (7.6) and (7.7) follow from [27, Proposition 12.5] and [27, Proposition 12.2], respectively. 
Although [27] assumes that the state space is a separable Banach space, these particular results are also valid for 
general topological vector spaces. �
Lemma 7.6. Imin : E → [0, ∞] is convex.

Proof. We adapt the proof of [27, Proposition 12.9]. Let U, V be open and convex sets. For fixed n ∈ N , define 
Xn+1,2n = 1

n

∑2n
i=n+1 ξi . Since X2n = 1

2 (Xn + Xn+1,2n), as well as Xn and Xn+1,2n are independent,

P (Xn ∈ ↑U)P (Xn+1,2n ∈ ↑V ) = P ({Xn ∈ ↑U} ∩ {Xn+1,2n ∈ ↑V }) ≤ P (X2n ∈ 1
2↑U + 1

2↑V ).

Hence,

1
2

1
n

logP (Xn ∈ ↑U) + 1
2

1
n

logP (Xn ∈ ↑V ) ≤ 1
2n

logP (X2n ∈ 1
2↑U + 1

2↑V ).

It follows from Lemma 7.5 that

J 1
2 ↑U+ 1

2 ↑V
= lim

n→∞
1
n

logP (Xn ∈ 1
2↑U + 1

2↑V )

= lim
n→∞

1
2n

logP (X2n ∈ 1
2↑U + 1

2↑V )

≥ 1
2 lim

n→∞
1
n

logP (Xn ∈ ↑U) + 1
2 lim

n→∞
1
n

logP (Xn ∈ ↑V )

= 1
2J↑U + 1

2J↑V .

Since the topology of E is generated by the collection of all convex open subsets of E, we can apply Lemma 6.1 to 
conclude that Imin is convex. �
Definition 7.7. An E-valued random variable ξ is called convex tight if for every ε > 0 there exists a convex compact 
K ⊂ E such that P (ξ ∈ K) ≥ 1 − ε. Moreover, ξ is said to be convex inner regular if for every ε > 0 and each convex 
open O ⊂ E, there exists a convex compact K ⊂ O such that P (ξ ∈ K) ≥ P (ξ ∈ O) − ε.

By adapting [27, Proposition 12.7] to the present setting, we remark that every E-valued random variable that is 
convex tight is also convex inner regular. Moreover, if E is a separable Banach space, then every random variable is 
automatically convex tight and convex inner regular; see [27, Proposition 12.4] and [27, Proposition 12.7].

From now on, let ξ be an E-valued random variable distributed as ξ1. We need the following result from [27]. For 
the sake of completeness, we provide a proof.

Lemma 7.8. Let f : E → (0, ∞) be a Borel measurable function, and suppose that ξ is convex tight. Then, for every 
ε > 0, there exists a convex compact K ⊂ E such that

ε−1 ∧
(

logEP [f (ξ)] − ε
)

≤ logEP [f (ξ)1K(ξ)].

Proof. Suppose first that f : E →R is bounded. Fix ε > 0. Since ξ is convex tight, there exists a compact set K ⊂ E

such that

P (ξ ∈ Kc) ≤ (1 − e−ε)
EP [f (ξ)]

M
,

where |f (x)| ≤ M for all x ∈ E. Then,

EP [f (ξ)] = EP [f (ξ)1K(ξ)] +EP [f (ξ)1Kc(ξ)]
≤ EP [f (ξ)1K(ξ)] + MP (ξ ∈ Kc)

≤ EP [f (ξ)1K(ξ)] + (1 − e−ε)EP [f (ξ)],
which shows that logEP [f (ξ)] − ε ≤ logEP [f (ξ)1K(ξ)].
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In case that f is not bounded, due to the monotone convergence theorem, there exists N ∈N such that

ε−1 ∧
(

logEP [f (ξ)] − ε
)

≤ logEP [f (ξ) ∧ N ] − ε/2.

Since x �→ f (x) ∧ N is bounded, it follows from the first part that there exists a convex compact K ⊂ E such that

logEP [f (ξ) ∧ N ] − ε/2 ≤ logEP [f (ξ)1K(ξ)]. �
The logarithmic moment generating function of ξ is defined by


 : E∗+ → [0,∞], 
(μ) := logEP [exp(μ(ξ))].
In addition, we define its positive convex conjugate 
∗+ : E → [0, ∞] by


∗+(x) = sup
μ∈E∗+

{μ(x) − 
(μ)}.

Then the following monotone version of Cramér’s theorem holds.

Theorem 7.9. Suppose that ξ is convex tight. Then,

Imin(x) = 
∗+(x) for all x ∈ E. (7.8)

Moreover,

lim sup
n→∞

1
n
P (Xn ∈ C) ≤ − inf

x∈C

∗+(x) for all C ∈ C↑

c , (7.9)

lim inf
n→∞

1
n
P (Xn ∈ O) ≥ − inf

x∈O

∗+(x) for all O ∈ O↑. (7.10)

If additionally Xn is convex tight for all n ∈N , then

lim
n→∞

1
n
P (Xn ∈ O) = − inf

x∈O

∗+(x) for all convex O ∈ O↑.

Proof. Fix μ ∈ E∗+. Since (ξn)n∈N is i.i.d., we have for all N ∈N ,


(μ) = lim sup
n→∞

1
n

logEP [exp(nμ(Xn))]
≥ lim sup

n→∞
1
n

logEP [exp(n(N ∧ μ)(Xn))]
= φJ (N ∧ μ),

where the last equality follows from (7.5). Letting N → ∞, it follows from Lemma 4.1 that


(μ) ≥ φJ (μ).

Fix ε > 0. By Lemma 7.8, there exists a convex compact K ⊂ E such that

ε−1 ∧
(

(μ) − ε

)
≤ logEP [eμ(ξ)1K(ξ)].

Since (ξn)n∈N is i.i.d. and K is convex,

EP [enμ(Xn)1K(Xn)] ≥ EP [eμ(ξ1) · · · eμ(ξn)1K(ξ1) · · ·1K(ξn)]
= EP [eμ(ξ)1K(ξ)]n.

This shows that

ε−1 ∧
(

(μ) − ε

)
≤ logEP [eμ(ξ)1K(ξ)]
≤ lim sup

n→∞
1
n

logEP [enμ(Xn)1K(Xn)]
≤ sup

x∈E

{
μ(x) − Imin(x)

}

= I ∗
min(μ),
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where the last inequality follows from Lemma B.1 in the Appendix B. Since ε > 0 was arbitrary, we obtain φJ (μ) ≤

(μ) ≤ I ∗

min(μ). Hence, since the minimal rater function Imin is convex, lower semicontinuous and increasing, in line 
with Proposition 6.2, we obtain for all x ∈ E,

Imin(x) ≥ sup
μ∈E∗+

{μ(x) − φJ (μ)}

≥ sup
μ∈E∗+

{μ(x) − 
(μ)}

≥ sup
μ∈E∗+

{μ(x) − I ∗
min(μ)}

= Imin(x).

This shows equation (7.8). Moreover, since the concentration J is weakly maxitive, the upper bound (7.9) fol-
lows directly from Proposition 3.9. To show the lower bound (7.10), we consider the concentration JA :=
lim infn→∞ 1

n
logP (Xn ∈ A) with minimal rate function Imin. Let U be a topological base consisting of open convex 

sets. It follows from Lemma 3.6 that for every x ∈ E,

Imin(x) = − inf
U∈Ux

JU = − inf
U∈Ux

JU = Imin(x) = 
∗+(x),

where JU = JU is valid due to (7.7) in Lemma 7.5. Then the lower bound (7.10) follows from the lower bound (3.2), 
which is satisfied for the minimal rate function Imin = 
∗+.

Finally, suppose that for each n ∈N the random variable Xn is convex tight and therefore convex inner regular. Fix 
ε > 0, a convex O ∈ O↑ and N ∈ N . Since XN is convex inner regular, there exists a convex compact K ⊂ O such 
that

1
N

logP (XN ∈ O) ≤ 1
N

logP (XN ∈ K) + ε ≤ 1
N

logP (XN ∈ ↑K) + ε.

It follows from Lemma A.2 that ↑K ∈ C↑
c and ↑K is a Borel set. Since ↑K is convex, we can apply Lemma 7.5 to 

conclude

J↑K = lim sup
n→∞

1
n

logP (Xn ∈ ↑K) = sup
n∈N

1
n

logP (Xn ∈ ↑K),

and therefore

1
N

logP (XN ∈ O) ≤ 1
N

logP (XN ∈ ↑K) + ε ≤ sup
n∈N

1
n

logP (Xn ∈ ↑K) + ε = J↑K + ε.

By Proposition 3.9, it holds J↑K ≤ − inf
x∈↑K

Imin(x) ≤ − inf
x∈O

Imin(x). Hence,

1
N

logP (XN ∈ O) ≤ − inf
x∈O

Imin(x) + ε.

Letting N → ∞ and then ε ↓ 0,

JO = lim
N→∞

1
N

logP (XN ∈ O) ≤ − inf
x∈O

Imin(x),

where the limit above exists due to Proposition 7.5. The other inequality follows from the lower bound (3.2), which is 
satisfied for the minimal rate function Imin. �

The sample mean of an i.i.d. sequence of random variables with values in Rd satisfies the usual large deviation 
principle with rate function 
∗; cf. [5, Theorem 2.2.30]. In infinite dimensional spaces, the upper bound in the large 
deviation principle

lim sup
n→∞

1
n
P (Xn ∈ C) ≤ − inf

x∈C

∗(x) (7.11)

is only known for certain sets C ⊂ E. For instance, bounds for compact sets or convex open sets are shown in [5, 
Theorem 6.1.3], [14] and [27]. We obtain in (7.9) a new upper bound for compactly generated sets. Moreover, each 
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choice of the cone E+ yields a class of upwards closed sets for which we obtain an upper bound in terms of 
∗+. By 
Corollary 3.11, the upper bound (7.9) is valid for all C ∈ C↑ if the concentration JA = lim supn→∞ 1

n
logP (Xn ∈ A)

is tight. Moreover, the lower bound in the large deviation principle

lim inf
n→∞

1
n

logP (Xn ∈ O) ≥ − inf
x∈O


∗(x) (7.12)

is valid for all open set O ⊂ E; see e.g. [27]. Since − infx∈O 
∗+ ≥ − infx∈O 
∗, we obtain in (7.10) a sharper lower 
bound on upwards closed open sets.

8. Conclusions

It is well-known that the maxitive integral with respect to a completely maxitive concentration (capacity) is 
uniquely determined by a rate function (possibility distribution). In this paper, we have introduced the notion of weak 
maxitivity, and we have shown that, if a concentration J is weakly maxitive and tight, then the corresponding maxitive 
integral φJ is determined by the minimal rate function Imin on the space of all increasing continuous functions.

Furthermore, every maxitive integral φJ is a non-linear expectation with the translation property, and we have 
argued that φJ is weakly maxitive if J is weakly maxitive. Conversely, we have shown that every weakly maxitive 
non-linear expection ψ with the translation property has a maxitive integral representation ψ = φJ on the space of all 
increasing continuous functions.

Motivated by the theory of large deviations, we have provided different representation results for the minimal rate 
function Imin. First, under Assumption 5.1 (which is satisfied if the state space E is a preordered topological group), 
we have seen that the rate function is determined by the space of all bounded increasing continuous functions, i.e.,

Imin(x) = sup
f ∈C

↑
b

{f (x) − φJ (f )}.

In addition, we have formulated monotone analogues of the large deviation principle and the Laplace principle, which 
have been shown to be equivalent under suitable conditions and which uniquely determine the rate function within 
the class of increasing lower semicontinuous functions. Second, we have focused on the case where the rate function 
is a convex function on a locally convex topological real vector space E. In that case, under an additional assumption 
which is implied by the monotone Laplace principle, the minimal rate function is specified by the dual space, i.e.,

Imin(x) = sup
μ∈E∗

{μ(x) − φJ (μ)}.

Finally, we have shown that standard large deviations theory can be understood within the framework of weakly max-
itive concentrations and their maxitive integrals. In turn, the present framework enlarges the scope of large deviations 
theory to non-standard situations, which we have illustrated with two examples. On the one hand, we have covered 
the asymptotic concentration of capacities on preordered topological spaces. On the other hand, we have established 
new large deviation bounds for the sample mean of i.i.d. sequences on upwards closed sets by showing a monotone 
analogue of Cramér’s theorem on locally convex topological vector spaces.
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Appendix A. Auxiliary results for preordered topological groups

Let G be a Hausdorff topological abelian group. Given a subset G+ ⊂ G such that

G+ + G+ ⊂ G+, 0 ∈ G+,
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we endow G with the preorder induced by G+, i.e., x ≤ y if and only if y − x ∈ G+. Next, we show that G satisfies 
Assumption 5.1.

Theorem A.1. For every A ∈ C↑ and x /∈ A there exists an increasing continuous function f : G → [0, 1] such that

f (x) = 0 and A ⊂ f −1(1).

Similarly, for every A ∈ C↓ and x /∈ A, there exists an increasing continuous function f : G → [0, 1] such that

A ⊂ f −1(0) and f (x) = 1.

Proof. Notice that it suffices to prove the first statement as the second one can be obtained from the first one by 
applying the transformation z �→ −z. The argumentation is an adaptation of [16, Theorem 5], where it is shown that 
every topological group is completely regular.

Suppose that A ∈ C↑ and x /∈ A. Without loss of generality, we assume that x = 0. Denote by D the set of all dyadic 
rational numbers of the interval [0, 1], i.e., D := {k2−n : n, k ∈ N, k ≤ 2n}. As in the proof of [16, Theorem 5], it is 
possible to construct a family (Vr)r∈D of open neighborhoods of 0 ∈ G which satisfy the following properties:

(i) V1 = Ac ,
(ii) Vr = −Vr for r < 1,

(iii) Vr ⊂ Vs if r ≤ s,
(iv) Vk2−n + V2−n ⊂ V(k+1)2−n for k = 1, . . . , 2n − 1.

Then, we define

f : G → [0,1], f (x) := 1 ∧ inf{r ∈ D : x ∈ ↓Vr}.
As usual, we set inf∅ := ∞. Since 0 ∈ ↓Vr for all r , we have that f (0) = 0. Suppose that x ∈ A. Due to (i), (iii), and 
Lemma 3.3, we have that ↓Vr ⊂ Ac for all r . Hence, if x ∈ A, we have that x /∈ ↓Vr for r , and consequently f (x) = 1. 
Finally, since ↓Vr is downwards closed, it follows that f is increasing. It remains to show that f is continuous. To 
that end, we fix y ∈ G.

First, suppose that f (y) = 1. Let ε > 0 and fix n ∈ N with 2−(n−1) < ε. We show that z ∈ y + V2−n implies that 
z ∈ (↓Vk2−n)c for all k < 2n − 2. If otherwise z ∈ ↓Vk2−n , then due to (ii) and (iv),

y ∈ z − V2−n = z + V2−n ⊂ ↓Vk2−n + V2−n ⊂ ↓Vk2−n + ↓V2−n ⊂ ↓V(k+1)2−n ,

and therefore, f (y) ≤ (k + 1)2−n < (2n − 1)2−n < 1, which is a contradiction to f (y) = 1. Thus, for z ∈ x + V2−n , 
we have f (z) ≥ (2n − 2)2−n, and therefore

|f (y) − f (z)| = 1 − f (z) ≤ 1 − (2n − 2)2−n = 2−(n−1) < ε.

We conclude that f is continuous at y.
Second, suppose that 0 < f (y) < 1. Let ε > 0 and n ∈N such that 2−(n−1) < ε, 2−(n−1) < 1 −f (y), and 2−(n−1) <

f (y). Let k ∈N be the smallest i ∈ {1, . . . , 2n} such that y ∈ ↓Vi2−n . Then, (k − 1)2−n ≤ f (y) ≤ k2−n and

y ∈ ↓Vk2−n ∩ (↓V(k−1)2−n)c.

Since 1 − f (x) > 2−(n−1), we have 1 − (k − 1)2−n ≥ 1 − f (x) > 2−(n−1), so that k < 2n. Since f (x) > 2−(n−1), it 
holds k2−n ≥ f (x) > 2−(n−1), and therefore k > 2. We have z ∈ (↓V(k−2)2−n)c whenever z ∈ y + V2−n . Otherwise, 
due to (ii) and (iv), we obtain

y ∈ z − V2−n = z + V2−n ⊂ ↓V(k−2)2−n + V2−n ⊂ ↓V(k−2)2−n + ↓V2−n ⊂ ↓V(k−1)2−n ,

which is a contradiction. Moreover, if z ∈ y + V2−m , since y ∈ ↓Vk2−n , it follows from (iv) that16

16 We can apply (iv). Indeed, since f (x) ≥ (k − 1)2−n , we have 1 − (k − 1)2−n ≥ 1 − f (x) > 2−(n−1) , and therefore k < 2n .
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z ∈ y + V2−n ⊂ ↓Vk2−n + ↓V2−n ⊂ ↓V(k+1)2−n .

Hence, for z ∈ y + V2−n , we have (k − 2)2−n ≤ f (z) ≤ (k + 1)2−n, and therefore

|f (y) − f (z)| ≤ 2−(n−1) < ε.

We conclude that f is continuous at y.
Third, suppose that f (y) = 0. Let ε > 0 and fix n ∈N with 2−(n−1) < ε. Since f (y) = 0, we have y ∈ ↓V2−n . For 

z ∈ y + V2−n , it holds

z ∈ y + V2−n ⊂ ↓V2−n + ↓V2−n ⊂ ↓V2−(n−1) ,

and therefore

|f (y) − f (z)| = f (z) ≤ 2−(n−1) < ε.

We conclude that f is continuous at y. The proof is complete. �
Lemma A.2. Suppose that G+ is closed. If K ⊂ G is compact, then ↑K is closed.

Proof. Suppose that (xα) is a net in ↑K such that xα → x. We show that x ∈ ↑K . For each α, we have xα = yα + zα

where yα ∈ K and zα ∈ G+. Since K is compact there exists a subnet (yβ) such that yβ → y ∈ K . Then zβ = xβ − yβ

converges to x − y. Since G+ is closed, we have x − y ∈ G+, and therefore x ∈ K + G+ = ↑K . �
Appendix B. Auxiliary result for asymptotic concentration of capacities

Let (E, ≤) be a topological preordered space which satisfies Assumption 3.1. In line with Section 7, we consider 
the concentration JA := lim supn→∞ 1

n
logμn(A) with minimal rate function Imin, where μn(A) := En(1A) for all 

A ∈ OC↑, and (En)n∈N is a sequence of sublinear expectations on B.

Lemma B.1. Let K ⊂ E be a compact set. Then, for every f ∈ L↑ ∩ U↑,

lim sup
n→∞

1
n

logEn

(
exp(nf )1K

) = φJ (−∞1Kc + f 1K)

≤ sup
x∈E

{
f (x) − Imin(x)

}
.

Proof. If JK = −∞, then the first two terms are equal to −∞ as f is bounded on K , hence the inequality trivially 
holds. Otherwise, if JK > −∞, we consider the concentration JK

A := JA∩K − JK , A ∈ OC↑, and the trivial preorder 

≤.17 By similar arguments as in Proposition 7.3, for every f ∈ L
↑ ∩ U

↑
,

φJK (f ) = φJ (−∞1Kc + f 1K) − JK = lim sup
n→∞

1
n

logEn(exp(nf )1K) − JK. (B.1)

Moreover, since −∞1Kc + f 1K ∈ U
↑
c , it follows from Theorem 3.5 that

φJ (−∞1Kc + f 1K) ≤ sup
x∈K

{
f (x) − I 0

min(x)
} ≤ sup

x∈E

{
f (x) − I 0

min(x)
}
, (B.2)

where I 0
min denotes the minimal rate function for the concentration J w.r.t. the trivial order. By definition of the 

minimal rate function, it holds I 0
min ≥ Imin. Hence, we obtain the claimed assertion as a direct consequence of equa-

tion (B.1) and inequality (B.2). �
17 I.e., x ≤ y if and only if x = y.
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