Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1103/PhysRevB.101.075432

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorSomoza, Andres M.-
dc.contributor.authorPalacios-Lidon, Elisa-
dc.date.accessioned2025-01-20T18:08:54Z-
dc.date.available2025-01-20T18:08:54Z-
dc.date.issued2020-02-27-
dc.identifier.citationPhysical Review B 101, 075432es
dc.identifier.issnPrint: 2469-9950-
dc.identifier.issnElectronic: 2469-9969-
dc.identifier.urihttp://hdl.handle.net/10201/148865-
dc.description©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the accepted version of a Published Work that appeared in final form in Physical Review B. To access the final edited and published work see https://doi.org/10.1103/PhysRevB.101.075432-
dc.description.abstractThe study of thin-film materials is a subject of growing interest. Some of these materials are insulating due to the presence of disorder, which also produces localization of charges. Kelvin probe force microscopy (KPFM) is a unique tool to characterize these materials, but a full quantitative interpretation of the results is still lacking. To address this problem, we propose a simple and fast procedure based on the image charge method that represents an advance in this direction since it is not limited to any film thickness or the nature of the underlying substrate. Even more, it can be combined with fast Fourier transform algorithms to generate theoretical images from known charge distributions or to obtain charge distributions from the Kelvin voltage images. Within this framework, we analyze the problem of the lateral resolution of the technique, providing a criterion to estimate it. Finally, we address the problem of systems with hopping conductivity where multiple localized charges coexist. We demonstrate that even in these complex systems, the KPFM gives valuable information, allowing us to distinguish between noninteracting and interacting electronic systems. Furthermore, it is possible to calculate the charge density in the noninteracting case.es
dc.formatapplication/pdfes
dc.format.extent8es
dc.languageenges
dc.publisherAmerican Physical Societyes
dc.relationThis work was supported by Spanish MINECO Grants No. FIS2015-67844-R and No. ENE2016-79282-C5-4-R and by Fundación Séneca Grants No. 19907/GERM/15 and No. 20860/PI/18.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCharge Density of states, Electrical conductivity Electrical properties Localizationes
dc.subject.otherCDU::6 - Ciencias aplicadases
dc.titleLocalized charges in thin films by Kelvin probe force microscopy: From single to multiple chargeses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.075432es
dc.identifier.doihttps://doi.org/10.1103/PhysRevB.101.075432-
dc.contributor.departmentDepartamento de Física-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
BM13669 (1).pdfpre-print2,24 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons