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Abstract

The study of thin film materials is a subject of growing interest. Some of these materials are

insulating due to the presence of disorder, which also produces localization of charges. Kelvin probe

force microscopy is unique tool to characterize these materials, but a full quantitative interpretation

of the results is still lacking. To address this problem, we propose a simple and fast procedure based

on the image charge method that represents an advance in this direction since it is not limited to

any film thickness or nature of the underlying substrate. Even more, it can be combined with FFT

algorithms to generate theoretical images from known charges distributions or to obtain charges

distributions from the Kelvin voltage images. Within this framework, we analyze the problem of

the lateral resolution of the technique, providing a criterion to estimate it. Finally we address

the problem of systems with hopping conductivity where multiple localized charges coexist. We

demonstrate that even in these complex systems, the KPFM gives valuable information, allowing to

distinguish between non-interacting and interacting electronic systems. Furthermore, it is possible

to calculate the charge density in the non-interacting case.

I. INTRODUCTION

The characterization of localized charges on insulating surfaces is a key point in many

fields ranging from triboelectric charging studies [1, 2], defects in solids [3–5], nanoclusters

[6–8] to biological systems such as adsorbed molecules on dielectric substrates [9, 10]. More-

over, the development of smaller, faster and eco-friendly optoelectronic devices lies on the

use of thin films of novel materials such as conducting polymers, low- and high-κ materi-

als or 2D flake-like materials such as graphene oxide (GO), reduced GO, transition metal

dichalcogenides (TMDCs), etc. These materials usually present low or moderate conductiv-

ity and are treated as low-crystallinity or glassy systems in which the high degree of disorder

induces the localization of the electron wave function, being their conductivity via hopping

mechanisms [11–15]. In these systems, a direct observation of the charge distribution would

be of great importance. It could permit to map the energy landscape and could give quanti-

tative validity to the theoretical models. Similarly, the possibility of monitoring the charge

dynamics, both in equilibrium as well as when the system is perturbed is fundamental to
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link the conductivity with the microscopic parameters and it would help to elucidate the

role of the different underlying processes.

Kelvin probe force microscopy (KPFM) has been revealed as a unique tool to monitor lo-

calized charges [16, 17]. It can give invaluable information inaccessible with other techniques,

since it can be used in highly insulating samples [12]. Independently of experimental KPFM

mode: amplitude modulation (AM), frequency modulation (FM) or heterodyne mode in

static, open-loop, or closed-loop configuration the KPFM signal VKPFM is

VKPFM = VCharge + VCPD (1)

where VCPD = ∆φ/e is the classical surface contact potential difference of the electrodes

work functions ∆φ (tip and sample in this case), and VCharge is the term that includes the

localized charges contribution [18]. The quantitative analysis of the VCharge signal is not

straightforward and demands a further theoretical modeling. On the one hand, it depends

of the tip geometry, the tip-sample distance (z) as well as on the relative permittivity

(εr = ε/ε0) of the different materials of the system. Thus, all these parameters should be

characterized during the data acquisition. On the other hand, the absence of analytical

expressions, even for the simplest systems forces to address the problem numerically. This

may require a large computational effort, specially when many charges are involved.

Recently, it was shown that this computation can be drastically reduced by using Fast

Fourier Transform (FFT) algorithms, both to generate the theoretical VCharge(x, y, z) image

of a pre-established charge distribution or to directly obtain the charge distribution q(x, y)

from an experimental VCharge(x, y, z) image [19]. However, in both cases, the Kelvin voltage

image that would generate a point charge placed at the center of the image (Vpoint(x, y, z)),

for a specific system and working conditions is needed. Simple charge distributions in thick

dielectrics for different tip geometries has been already modeled using different approxima-

tions [7, 20–23]. Nevertheless, a model to calculate the Vpoint for localized charges in thin

films supported on metallic or dielectric substrates is still lacking.

In this work we propose a simple and fast procedure based on the image charges method

to obtain the Vpoint signal when the charges are localized in thin films. This versatile method

is not limited to any film thickness or nature of the underlying substrate, and it shows that

Vpoint is a key quantity that plays an important role in any quantitative interpretation of

VCharge images. We then combine the obtained Vpoint with FFT algorithms to generate the
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expected VCharge images for known charges distributions and discuss the final lateral resolu-

tion of the technique. Finally, we address the problem of systems with hopping conductivity

where multiple localized charges coexist. We demonstrate that even in these complex sys-

tems, the KPFM gives valuable information, allowing to distinguish between non-interacting

and interacting electronic systems. Furthermore, it is possible to calculate the charge density

in the non-interacting case as well as to validate different models for the electron-electron

interaction, in the interacting systems.

II. MODEL DESCRIPTION

In order to simplify the following discussion, from now, we will focus on the VCharge

contribution of the VKPFM signal considering VCP = 0. Following notation of Ref. [18, 23],

the electrostatic energy of the tip-sample system in presence of charges is

Welec(V, z) = u0(z) + u1(z)V + u2(z)V 2 (2)

where V is the bias voltage between tip and sample. The term proportional to V , u1(z),

is due to the interaction of the localized charges with the potential generated by the tip-

sample capacitor while the term u2(z) is the energy of the capacitor, that is independent

of the localized charges. Depending on whether the force or the frequency are used for the

KPFM measurements, the VCharge signal is

V AM
Charge = − u′1(z)

2u′2(z)
(3)

V FM
Charge = − u′′1(z)

2u′′2(z)
(4)

Therefore, in order to obtain VCharge, the derivatives of u1(z) and u2(z) (with respect to z)

should be calculated. The image charge method has been previously used to calculate both

u′1 and u′2 for systems with localized charges in thick dielectrics, modeling a metallic spherical

tip in front of a semi-infinite dielectric[17, 23, 24]. The case of thin films has already been

considered in Refs. [25–27], but only the u2 term was obtained. However, to fully solve the

problem of localized charges on thin films, the u1 term is of vital importance and should be

also obtained.

According to the superposition principle a general VCharge(x, y, z) can be expressed as

VCharge(x, y, z) =

∫
dx′dy′dz′ q(x′, y′, z′)Vpoint(x, y, z;x′, y′, z′), (5)
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where q(x′, y′, z′) is the charge density of the problem and Vpoint(x, y, z;x′, y′, z′) is the VCharge

image corresponding to a single point charge located at (x′, y′, z′). This expression can be

further simplified if we assume that all localized charges are located at the same height

z′ = d. Then, as explained in Ref. [19], we can use FFT algorithms:

VCharge(x, y) = IFT (q(k)Vpoint(k)) (6)

q(x, y) = IFT (VCharge(k)/Vpoint(k)) , (7)

where IFT corresponds to Inverse Fourier Transform. We see that we can use Vpoint(k)

either to construct the expected VCharge image from a known charge density q(x, y, d) or to

determine it from an experimental VCharge image. The assumption of charges at the same

height is reasonable in many experiments where the Vpoint signal is similar for not very

different charge heights, such as deposition of charged particles on the surface or in very

thin 2D materials. There is no a generic formula to know “a priori” the validity of this

approximation, and the dependence of the Vpoint with the tip height should be computed

for each specific system (see section II and Fig. 2 (c) and (d)). However a generic rule can

be given: the lower ε1 and ε2 the better the approximation. In the opposite limit, when

the Vpoint signal strongly decreased with the charge depth (large ε1 and/or ε2), the KPFM

technique is only sensitive to the upper charges, and the ”‘same height”’ approximation is

still useful to determine the density of these upper charges. For simplicity, in this work we

will only consider the case where Eqs. (6,7) are valid, although a generalization to the case

of charges located at different planes is straightforward and is described in the Supplemental

Material [28].

A. Calculation of Vpoint in thin films materials

Form the previous section it is realized that Vpoint(x, y, z, x
′, y′, z′) plays a key role in the

interpretation of Vcharge images. This quantity had been calculated for thick dielectric, but

it has not been estimated for the important case of thin film geometry. Thus, in this section

we solve the electrostatic problem, Eqs. (2-4), for a single point charge inside a thin film. A

scheme of our system is shown in Fig. 1. A metallic spherical tip (of radius R at constant

potential V ) is placed (at a tip-surface distance z) on top of a thin layer of thickness h and

relative permittivity ε1 supported by a semi-infinite substrate with relative permittivity ε2.
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Then, a point charge q0 is placed inside the layer (at z = d ≤ 0).

Figure 1. Scheme of the used model

Since we are interested in calculating the force acting on the sphere due to electrostatic

interactions, we need to properly describe the electrostatic potential in the region of ε0. This

is done, using the image charge method, by locating image charges inside the sphere and in

the sub-surface (z < 0) region. To do so, we first calculate the capacitance related u2 term

in a similar way to Ref. [25, 27] but we generalize the result to any ε2 and not only to metal

substrates (we recover their results when ε2 →∞).

In order to calculate the image charges, the general problem is divided in two parts.

First, due to the layer geometry and the two boundary conditions that need to be fulfilled

(at z = 0 and z = −h) any charge q located at z0 > 0 will produce an infinite set of

image charges in the region z < 0 according to the Table I, where s1 = (ε1 − 1)/(ε1 + 1)

and s2 = (ε2 − ε1)/(ε2 + ε1). Second, to guarantee constant potential at the surface of the

sphere, any charge q located at r outside the sphere will produce an image charge q′ located
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Table I. Image charges associated to a charge q located at z0 > 0

i qi zi

i = 0 -s1q -z0

i ≥ 1 (−s1)i−1si2(s21 − 1)q −z0 − 2ih

at r′, inside the sphere, according to the equations:

q′ = q
R

|rs − r|
(8)

r′ = rs +
R2

|rs − r|2
(r− rs) (9)

where rs is a vector pointing to the center of the sphere.

According with these equations we calculate all the image charges proportional to V ;

starting the procedure with a point charge Q0 = 4πε0RV , located at the center of the

sphere, that produces the desired potential at the sphere surface. Then, equations of Table

I must be applied to this charge, producing an infinite set of image charges located at z < 0.

Each of these charges will generate a new image inside the sphere, which again will produce

another infinite set inside the dielectrics, and so on. This results in infinite series of infinite

charges, both in the sphere and at z < 0, that must be truncated to afford the numerical

calculation. Afterward, the image charges inside the sphere are used to calculate the u2

term [27, 29]. As QV = CV , u2 is directly obtained

u2(z) = −1

2
C(z), (10)

where QV is the sum of all the charges proportional to V inside the sphere and V is the

potential of the battery connected to the sphere.

Now, to obtain u1, we need to extend the image charge method to describe to a localized

charge inside the thin layer. As shown in the Supplemental Material [28] (see, also, references

[25–27] therein), one charge q0 located at −h ≤ d ≤ 0 will generate two infinite sets of image

charges in the z < 0 region, as indicated in Table II. Each of these charges will generate

new image charges inside the sphere and in z < 0 that as in the previous case are calculated

with Table I and Eq. (9), all of them proportional to the initial charge q0.

The computation of the force between all charges inside the sphere with all charges outside

directly leads the force acting on the sphere (−u′1 and −u′2). Unfortunately, as stated above,
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Table II. Image charges associated to a charge q0 located at −h < d < 0

i qi zi

i ≥ 0 (−s1s2)i(1− s1)q0 d− 2ih

j qj zj

j ≥ 0 −(−s1s2)j(1− s1)s2q0 −(d+ 2(j + 1)h)

for thin layers we are dealing with an extremely large number of charges that results in a

large computational effort (for large ε1 and ε2, if high precision is required, the number of

image charges can be larger than 108). To solve this problem, a practical solution (similar

to the one used for u2) is used to calculate u1 directly, and then calculate the derivative

numerically. As shown in Ref.[30], the electrostatic energy of the problem (including the

battery) can be written as:

Ueff =
1

2
q0V (r)− 1

2
QtotV, (11)

where V (r) is the electrostatic potential at the location of the charge q0 and Qtot is the total

charge in the sphere. The charge Qtot has two contributions: (i) The sum of all the charges

proportional to V inside the sphere (QV ), and (ii) the sum of all the charges proportional to

q0 inside the sphere (Qq0). As shown above, the first contribution produces a V 2 dependence

and is used to calculate u2. The potential V (r) also has two contributions: (i) VV (r), the

potential generated by all charges proportional to V , and (ii) Vq0(r), the potential generated

by all charges proportional to q0 (except q0 itself). Collecting the contributions proportional

to V we get

u1V = (1/2)q0VV (r)− (1/2)Qq0V, (12)

but it turns out that both terms produce identical contributions [30] so,

u1 = −Qq0 . (13)

In summary, not only u2 but also u1 can be obtained by adding the different image charges

inside the sphere. This result is of great importance for the numerical calculation. We not

only save computing time, avoiding the double sum that a direct calculation of forces would

require, but also, during the numerical calculation we can save computer memory deleting all

charges for which their corresponding images have been taken into account. It also justifies

a simple truncation procedure of the infinite series neglecting any image charge smaller and

err× q0, where we used typically err < 10−13.
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Finally, once the u1 and u2 for different tip distances are computed, we calculate the

derivatives numerically in order to obtain the corresponding V AM
point and V FM

point from Eq. (4).

In this way, typical V FM
point curves (horizontal or lateral profiles), with absolute error lower

than 10−6, can be computed with a common modern laptop in a few seconds. We will be

pleased to share our code under request.

From now on, we will focus on the V FM
Charge = VCharge signal; since in our model, the

spherical tip assumption neglects the cone and cantilever contributions, and it is well known

that V FM
Charge is less sensitive to them than the V AM

Charge one [31]. A similar analysis could be

done for the V AM
Charge signal. Finally, We would like to note, that in this work the contribution

of u0 is not used, but according to Eq. (11), it can also be easily calculated if needed, adding

the potential generated at r by all charges proportional to q0 .

III. RESULTS

A. Model applications

It is not the aim of this work to exhaustively explore and analyze all the possible systems

but to show the potential of the proposed method, specially for complex multiple point

charges distributions. However, to show its versatility, some relevant examples has been

calculated in Fig. 2, where Vpoint of a point charge as a function of the tip-sample distance

together with the corresponding lateral profiles at z = 0.5R for different configurations are

plotted.

Figure 2 (a) and (b) show the dependence of Vpoint with the film thickness h. Another

important case is when the localize charge is not at the surface but buried within the thin

layer as shown in Figure 2 (c) and (d). In this situation, depending on the depth of the

charge, d, Vpoint may increase or decrease with the tip-sample distance. However, for a fixed

distance the deeper the charge, the smaller the V FM
point signal is (Fig. 2 (d)). This means

that, in systems with localized charges at different depths, the main contribution to the

VCharge will come from the upper charges. Finally, changing ε1 with respect to ε2 (see Fig. 2

(e)) Vpoint decreases for short distances and increases for large distances with a minimum at

z ≈ R. Besides that, other behaviors can be found for different parameters combinations; the

previous results highlight that not only h, d and ε1, but also z and the ε2 of the underlying
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Figure 2. (left graphs) V FM
Charge as a function of the tip-sample distance z. (right graphs) Lateral

profiles at z = 0.5R (a) and (b) ε1 = 3.9, ε2 = 12, d = 0 and h = 0.05, 0.1, 0.3, 0.5, 0.7, 1, 3, 5, 10, 20

and 50 (R units). The two limits h = 0 and h = ∞ has been included (dashed lines). (c) and

(d) ε1 = 3.9, ε2 = 12, h = 1 and d = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 in R units.(e) and (f)

ε2 = 3.9, h = R d = 0 and ε1 = 3.9, 4, 6, 8, 10, 12, 15, 17, 20, 30, 40, 50, 70.

substrate, greatly affect the contrast of the VCharge images. While the former are usually

related with the studied thin film material, the latter can be tuned (selecting the appropriate

substrate) to optimize the KPFM measurements.

B. VCharge images generation and lateral resolution

From the lateral profiles shown above and taking advantage of the uniaxial symmetry,

we directly obtain the Vpoint image for a specific system (ε1, ε2, h and d) and measurement

parameters (R, z, image size L × L and image number of points n × n). Then, by using

Eq. (6) we generate a theoretical VCharge(x, y, z) image produced by an ”ad-hoc” charge

distribution, q(x, y) [19]. In order to show this procedure, two Vpoint calculated for the
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same system (h = R = 15 nm, d = 0, ε1 = 3.9, ε2 = 12, L = 600 nm) but at different

tip-sample distances (z = 7 nm and 28 nm) are used to obtain the corresponding VCharge

images of a charge distribution consisting of three pairs of charges separated 7, 14 and

28 nm respectively (Fig. 3 (a) and (b)). This simple example is useful to address the

Figure 3. (a) Generated V FM
Charge image of q(x, y) of three pairs of charges separated 7, 14 and 28

nm in a system with parameters h = R = 15 nm,d = 0, ε1 = 3.9, ε2 = 12, L = 600 nm and z = 7

nm, (b) Simulated experimental images with a random Gaussian noise (σ = 15 mV), (c) q(x, y)

image obtained after IFT deconvolution with kc give by Eq. (17). (d),(e) and (f) Same images

as (a), (b) and (c) but obtained at z = 28 nm, (g) q(k) =
VCharge(k)
Vpoint(k)

. The dashed vertical lines

indicated the kc used in each of the cases.

lateral resolution question, that in any KPFM experiment is typically discussed directly

from VKPFM profiles. In presence of localized charges, this lateral resolution is directly

related to the broadness of the corresponding Vpoint and mainly depends on the measurement

parameters (R and z) [17]. However, it is important to note that a better lateral resolution

can be achieved by analyzing the q(x, y) image that is obtained from Eq. (7). A noisy

experimental VCharge image can be expressed as

VCharge(x, y, z) = V ideal
Charge(x, y, z) + σnoise(x, y) (14)
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where V ideal
Charge(x, y) is the ideal noise-free image generated by an underlying charge distribu-

tion while σnoise(x, y) is the noise matrix. Then,

q(x, y) = IFT

(
V ideal
Charge(k) + σnoise(k)

Vpoint(k)

)
(15)

In an ideal noise-free image (σnoise = 0), Eq. (15) would lead to the exact charge distribution.

In practice, the final lateral resolution of the q(x, y) image is limited by the cut-off, kc, of

the filter applied to (V ideal
Charge(k) + σnoise(k))/Vpoint(k) needed to avoid non-physical artifacts

produced by different sources of noise [19]. This cutoff determines the real lateral resolution,

δx, that can be achieved, as it is roughly half of the wavelength related to kc:

δx ≈ π

kc
. (16)

This kc can be easily estimated from Eq. (15) (see also Fig. 3 (g)). If the main source of

noise is white noise, σnoise(k) is approximately constant in amplitude while Vpoint(k) decays

exponentially with k (as it does V ideal
Charge(k)). So a good estimation of kc is obtained from the

ratio
σnoise(kc)

Vpoint(kc)
≈ 1. (17)

Actually, under an appropriated data filtering this resolution can be slightly improved [19].

These ideas are shown in Fig. 3 (b) and (e), where experimental images has been simulated

by adding a random Gaussian noise to each image point of Fig. 3 (a) and (d). In order

to obtain the corresponding q(x, y) images (Fig. 3(c) and (f)), the cut-off radius has been

used in each case following the previous criterion. In Fig. 3 (g) it can be observed how the

apparent q(k) grows exponentially after the dashed line due to the effect of σnoise(k) (the

flat behavior for large k is due to numerical errors).

C. Multiple-charges distributions: effect of charge correlations

The previous methodology allows us to address the study of systems where multiple

charges coexist [1, 2, 32–34]. In this section we will focus on thin-film systems with hop-

ping conductivity where charge localization plays a crucial role [11–15]. These systems are

characterized by a large amount of disorder that produces the localization of charges and

the electronic transport takes place via activated tunneling: electrons hop from a localized
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occupied state to an empty one assisted by phonons. Coulomb interaction between charges

is especially important in the strongly localized regime because the low mobility of charges

results in a drastic reduction of the screening. One significant effect of the interaction is

that, at low temperatures, the density of states (DOS) is greatly reduced and a soft gap

is opened at the Fermi level, as predicted by Pollak [35] and characterized by Efros and

Shklosvkii [36]. In this case conductivity follows an Efros-Shklovskii variable-range hoping

(VRH) law. At high temperatures, interactions become less important and as a result the

soft gap is filled and conduction changes to a Mott VRH law. In general, we can expect

that correlations between charges become negligible when kT > U , where U is the typical

interaction energy between nearest neighbors localized charges. In order to analyze how the

interactions and correlation between charges modify the VCharge images, we have generated

correlated and non-correlated q(x, y) distributions using a standard electron glass model

[37, 38] considering a squared system of size LxL with N sites randomly distributed.

H =
N∑
i=1

εini + U0R
∑
i<j

(ni −K)(nj −K)

rij
, (18)

where N is the number of sites. The first term of the right-hand side includes the effect of

disorder, ni is the occupation of one site (which is either 0 or 1) and εi is a random energy

in the interval [−W/2,W/2], where W measures the strength of disorder. The second term

corresponds to the Coulomb interaction between sites, whereK is the mean occupation of one

site (we consider K = 1/2). The strength of interaction is determined by U0R, where R is the

tip radius. Then, U0 corresponds to the interaction energy of two unit charges separated a tip

radius, and we will fix it to U0 = 1 as the unit of energy. Although, so far, this analysis must

be considered qualitative, we have fixed some quantities to realistic values: L = 500 nm, W =

2U0, and the localization length is assumed to be smaller than 2 nm to consider them as point

charges in a VCharge image. Finally, to get typical equilibrium configurations of the q(x, y),

we performed Monte Carlo simulations using a metropolis algorithm for electron glasses

[39]. With this model, we can generate multi-charges distributions for systems both with

interacting, correlated charges (we fixed temperature kT = 0.03U0) and with uncorrelated

charges (we fixed U0 = 0, although similar results would have been obtained for interacting

systems at high temperatures) and therefore compare their expected VCharge images.

An example of how the VCharge images evolve as the number of charges, N , is increased

is shown in Fig. 4 ((a)-(d) non-interacting and (e)-(h) interacting systems respectively)
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Figure 4. V FM
Charge images from q(x, y) with an increasing number of charges generated with the

same Vpoint (ε1 = 3.9, ε2 = 12, h = 15 nm, R = 15 nm, z = 7 nm, image lateral size L = 500 nm

for (a)-(d) non-interacting and (e)-(h) interacting systems. To highlight the differences between

the two type of systems, the z scale has been fixed to ±120 mV in all the images

for ε1 = 3.9, ε2 = 12, h = 15 nm (eg. a 15 nm polymer or SiO2 on silicon) imaged

with a tip of R = 15 nm at a tip-sample distance z = 7 nm, being the image lateral

size L = 500 nm. For these parameters, the typical distance between nearest charges

corresponds to l = 50, 22, 15, 11 nm. At low charge densities, the localized charges can be

resolved individually and the effect of interaction is almost negligible as the mean distance

between particles is large. As N increases (decreasing the mean distance between charges),

the VCharge of the non-interacting system develops large bright and dark domains increasing

the overall image contrast. On the contrary, in the interacting system, the domain size and

domain contrast are basically constant and insensitive to the number of charges, being the

VCharge image very similar independently of N . This is understood noticing that, in a non-

interacting system (U0 = 0 or kT � U0), the probability of charge aggregation of the same

sign increases with N and therefore the domain size and contrast of the generated VCharge

domains increases. Conversely, in the interacting system (kT = 0.03U0), this possibility is

not allowed as charges of the same sign strongly repels each other and tend to be surrounded
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Figure 5. Var[V FM
Charge] vs N for non-interacting and interacting systems (ε1 = 3.9, ε2 = 12, h = 15

nm, R = 15 nm, z = 7 nm). The solid black line correspond to Eq. (19).

by charges of the opposite sign. In this situation, the average local charge should be always

about ±e independently of N . Then, an alternate domain contrast is expected in the VCharge

image, being the domain size about the width of the corresponding Vpoint(x, y, z). The

above results show that it is possible to distinguish between interacting and non-interacting

systems from the overall appearance and contrast of the VCharge image, as the two kind of

systems generate very different images.

According to this discussion we have found that the variance of a V FM
Charge image is a

sensitive quantity to determine the effect of interactions (see Fig. 5)). This is a simple but

interesting quantity also because it is easy to demonstrate that, for the non-interacting case:

Var[V FM
Charge] = NVar[Vpoint] + σ2

noise, (19)

where σ2
noise is the variance of the experimental noise (assumed to be uncorrelated white

noise). This relation provides a useful tool to estimate the charge density in non-interacting

systems, if the parameters of the system are properly characterized. Verification of the

results can be obtained measuring at different tip-sample distances.

The dependence of the Var[VCharge] with N in the interacting system is more complicated

and it is out of the scope of the present work. However, we note that it is related to charge

correlations due to interactions. It strongly depends of the model and the parameters used, as

well as on the temperature. Nevertheless, Var[VCharge] could be a simple and useful quantity

to validate different theoretical interacting models. Also, if Vpoint is well characterized for a
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system, the charge correlation function can be obtained from the VCharge image using FFT

methods.

IV. CONCLUSIONS

There is no doubt that the KPFM is a very promising technique to study systems with

localized charges, but at the same time, it becomes necessary to improve the quantitative

interpretation of the results. In this sense, the image generated by a point charge, Vpoint,

is a key quantity. On the one hand, it allows to generate theoretical VCharge images to

test different physical models. It is also needed in order to calculate the underlying charge

distribution from experimental images. In this context, we have proposed a charge image

method to calculate it for geometries consistent with most experiments (a layer of thickness

h and relative permittivity ε1 on top of another material with relative permittivity ε2). Even

more, we have analyze the influence of the Vpoint in the lateral resolution as well as the role

of the image noise, that is the limiting factor of the final lateral resolution of the technique.

In systems with multiple charges distribution, the VCharge image is always composed

of bright and dark potential domains. At large charge densities, each domain cannot be

assigned neither to an individual charge nor to an effective charge density. Due to the

long-range nature of the electrostatic interaction the VCharge contrast is not only due to the

charge below the tip, but the nearby charges have also important contributions. However,

even in this situation, the quantification of Var[VCharge] makes possible to determine the

density of localized charges for non interacting systems, or at least measure the importance

of interactions. In addition, working with the q(x, y) images, obtained from the VCharge

images by using the Vpoint image calculated with the proposed method would lead to a more

accurate analysis. This is particularly important on the study of heterogeneous charges

distributions or charge dynamics.
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