Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.swevo.2024.101587

Título: Surrogate-assisted multi-objective evolutionary feature selection of generation-based fixed evolution control for time series forecasting with LSTM networks
Fecha de publicación: 15-may-2024
Editorial: Elsevier
Cita bibliográfica: Swarm and Evolutionary Computation 88 (2024) 101587
ISSN: Print: 2210-6502
Electronic: 2210-6510
Materias relacionadas: CDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática.::004.9 - Técnicas basadas en el ordenador orientadas a aplicaciones
Palabras clave: Surrogate- assisted multiobjective evolutionary algorithm
Feature Selection
Deep learning
Incremental learning
Time series forecasting
Resumen: Surrogate-assisted multi-objective evolutionary algorithms are powerful techniques to solve computationally expensive multi-objective optimization problems. In this paper, we propose a direct fitness replacement method with generation-based fixed evolution control to implement a multi-objective evolutionary algorithm that uses a surrogate model for wrapper-type feature selection, where long short-term memory is established as the learning algorithm. The importance of the work and its benefits lie in the need to reduce the excessive computational time required by conventional wrapper-type feature selection methods based on multi-objective evolutionary algorithms and LSTM networks, maintaining or improving the predictive capacity of the models. We analyze the use of incremental learning to update the surrogate model, in comparison with the conventional non-incremental learning approach. We applied these methods in real-life time series forecasting of air quality, indoor temperature in a smart building and oil temperature in electricity transformers. Multi-step ahead predictions of the forecast models obtained with different meta-learners of the surrogate model were compared by using the Diebold–Mariano statistical test on a multi-criteria performance metric. The proposed method outperformed other approaches for feature selection including, among others, methods based on surrogate-assisted multi-objective evolutionary algorithms developed by the authors in previous research, other surrogate-assisted deterministic methods for feature selection and the conventional wrapper-type feature selection method based on LSTM, improving the prediction on test dataset by 23.98%, 34.61% and 13.77%, respectively.
Autor/es principal/es: Espinosa Fernández, Raquel
Jiménez Barrionuevo, Fernando
Palma Méndez, José Tomás
Versión del editor: https://www.sciencedirect.com/science/article/pii/S2210650224001251?via%3Dihub
URI: http://hdl.handle.net/10201/148761
DOI: https://doi.org/10.1016/j.swevo.2024.101587
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 27
Derechos: info:eu-repo/semantics/embargoedAccess
Descripción: © 2024 Published by Elsevier B.V. This document is the Published version of a Published Work that appeared in final form in Swarm and Evolutionary Computation. To access the final edited and published work see https://doi.org/10.1016/j.swevo.2024.101587
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Surrogate-assisted multi-objective evolutionary feature selection_SEC_2024.pdfSurrogate-assisted multi-objective evolutionary feature selection of generation-based fixed evolution control for time series forecasting with LSTM networks2,41 MBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.