Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.swevo.2024.101587

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorEspinosa Fernández, Raquel-
dc.contributor.authorJiménez Barrionuevo, Fernando-
dc.contributor.authorPalma Méndez, José Tomás-
dc.date.accessioned2025-01-18T19:10:56Z-
dc.date.available2025-01-18T19:10:56Z-
dc.date.issued2024-05-15-
dc.identifier.citationSwarm and Evolutionary Computation 88 (2024) 101587es
dc.identifier.issnPrint: 2210-6502-
dc.identifier.issnElectronic: 2210-6510-
dc.identifier.urihttp://hdl.handle.net/10201/148761-
dc.description© 2024 Published by Elsevier B.V. This document is the Published version of a Published Work that appeared in final form in Swarm and Evolutionary Computation. To access the final edited and published work see https://doi.org/10.1016/j.swevo.2024.101587-
dc.description.abstractSurrogate-assisted multi-objective evolutionary algorithms are powerful techniques to solve computationally expensive multi-objective optimization problems. In this paper, we propose a direct fitness replacement method with generation-based fixed evolution control to implement a multi-objective evolutionary algorithm that uses a surrogate model for wrapper-type feature selection, where long short-term memory is established as the learning algorithm. The importance of the work and its benefits lie in the need to reduce the excessive computational time required by conventional wrapper-type feature selection methods based on multi-objective evolutionary algorithms and LSTM networks, maintaining or improving the predictive capacity of the models. We analyze the use of incremental learning to update the surrogate model, in comparison with the conventional non-incremental learning approach. We applied these methods in real-life time series forecasting of air quality, indoor temperature in a smart building and oil temperature in electricity transformers. Multi-step ahead predictions of the forecast models obtained with different meta-learners of the surrogate model were compared by using the Diebold–Mariano statistical test on a multi-criteria performance metric. The proposed method outperformed other approaches for feature selection including, among others, methods based on surrogate-assisted multi-objective evolutionary algorithms developed by the authors in previous research, other surrogate-assisted deterministic methods for feature selection and the conventional wrapper-type feature selection method based on LSTM, improving the prediction on test dataset by 23.98%, 34.61% and 13.77%, respectively.es
dc.formatapplication/pdfes
dc.format.extent27es
dc.languageenges
dc.publisherElsevieres
dc.relationThis paper is funded by the CALM-COVID19 project (Ref: PID2022-136306OB-I00), grant funded by Spanish Ministry of Science and Innovation and the Spanish Agency for Research; and the IMPACT-T2D project [grant numbers PMP21/00092] supported by the Spanish Health Institute Carlos III (ISCIII) .es
dc.rightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectSurrogate- assisted multiobjective evolutionary algorithmes
dc.subjectFeature Selectiones
dc.subjectDeep learninges
dc.subjectIncremental learninges
dc.subjectTime series forecastinges
dc.subject.otherCDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática.::004.9 - Técnicas basadas en el ordenador orientadas a aplicacioneses
dc.titleSurrogate-assisted multi-objective evolutionary feature selection of generation-based fixed evolution control for time series forecasting with LSTM networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2210650224001251?via%3Dihub-
dc.embargo.termsSi-
dc.identifier.doihttps://doi.org/10.1016/j.swevo.2024.101587-
dc.contributor.departmentIngeniería de la Información y las Comunicaciones-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Surrogate-assisted multi-objective evolutionary feature selection_SEC_2024.pdfSurrogate-assisted multi-objective evolutionary feature selection of generation-based fixed evolution control for time series forecasting with LSTM networks2,41 MBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.