Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.asoc.2021.107850

Título: A time series forecasting based multi-criteria methodology for air quality prediction
Fecha de publicación: 7-sep-2021
Editorial: Elsevier
Cita bibliográfica: Applied Soft Computing 113 (2021) 107850
ISSN: Print: 1568-4946
Electronic: 1872-9681
Materias relacionadas: CDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática.::004.9 - Técnicas basadas en el ordenador orientadas a aplicaciones
Palabras clave: Air quality
Multivariate time series forecasting
Deep learning
Multi-criteria decision support systems
Resumen: There is a very extensive literature on the design and test of models of environmental pollution, especially in the atmosphere. Current and recent models, however, are focused on explaining the causes and their temporal relationships, but do not explore, in full detail, the performances of pure forecasting models. We consider here three years of data that contain hourly nitrogen oxides concentrations in the air; exposure to high concentrations of these pollutants has been indicated as potential cause of numerous respiratory, circulatory, and even nervous diseases. Nitrogen oxides concentrations are paired with meteorological and vehicle traffic data for each measure. We propose a methodology based on exactness and robustness criteria to compare different pollutant forecasting models and their characteristics. 1DCNN, GRU and LSTM deep learning models, along with Random Forest, Lasso Regression and Support Vector Machines regression models, are analyzed with different window sizes. As a result, our best models offer a 24-hours ahead, very reliable prediction of the concentration of pollutants in the air in the considered area, which can be used to plan, and implement, different kinds of interventions and measures to mitigate the effects on the population.
Autor/es principal/es: Espinosa Fernández, Raquel
Palma Méndez, José Tomás
Jiménez, Fernando
Kamińska, Joanna
Sciavicco, Guido
Lucena-Sánchez, Estrella
Versión del editor: https://www.sciencedirect.com/science/article/pii/S1568494621007729?via%3Dihub
URI: http://hdl.handle.net/10201/148742
DOI: https://doi.org/10.1016/j.asoc.2021.107850
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 25
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
A Time Series forecasting based multicreteria_ASC_2021.pdfA time series forecasting based multi-criteria methodology for air quality prediction2,57 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons