Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1016/j.asoc.2021.107850


Título: | A time series forecasting based multi-criteria methodology for air quality prediction |
Fecha de publicación: | 7-sep-2021 |
Editorial: | Elsevier |
Cita bibliográfica: | Applied Soft Computing 113 (2021) 107850 |
ISSN: | Print: 1568-4946 Electronic: 1872-9681 |
Materias relacionadas: | CDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática.::004.9 - Técnicas basadas en el ordenador orientadas a aplicaciones |
Palabras clave: | Air quality Multivariate time series forecasting Deep learning Multi-criteria decision support systems |
Resumen: | There is a very extensive literature on the design and test of models of environmental pollution, especially in the atmosphere. Current and recent models, however, are focused on explaining the causes and their temporal relationships, but do not explore, in full detail, the performances of pure forecasting models. We consider here three years of data that contain hourly nitrogen oxides concentrations in the air; exposure to high concentrations of these pollutants has been indicated as potential cause of numerous respiratory, circulatory, and even nervous diseases. Nitrogen oxides concentrations are paired with meteorological and vehicle traffic data for each measure. We propose a methodology based on exactness and robustness criteria to compare different pollutant forecasting models and their characteristics. 1DCNN, GRU and LSTM deep learning models, along with Random Forest, Lasso Regression and Support Vector Machines regression models, are analyzed with different window sizes. As a result, our best models offer a 24-hours ahead, very reliable prediction of the concentration of pollutants in the air in the considered area, which can be used to plan, and implement, different kinds of interventions and measures to mitigate the effects on the population. |
Autor/es principal/es: | Espinosa Fernández, Raquel Palma Méndez, José Tomás Jiménez, Fernando Kamińska, Joanna Sciavicco, Guido Lucena-Sánchez, Estrella |
Versión del editor: | https://www.sciencedirect.com/science/article/pii/S1568494621007729?via%3Dihub |
URI: | http://hdl.handle.net/10201/148742 |
DOI: | https://doi.org/10.1016/j.asoc.2021.107850 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 25 |
Derechos: | info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A Time Series forecasting based multicreteria_ASC_2021.pdf | A time series forecasting based multi-criteria methodology for air quality prediction | 2,57 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons