Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1016/j.asoc.2021.107850


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Espinosa Fernández, Raquel | - |
dc.contributor.author | Palma Méndez, José Tomás | - |
dc.contributor.author | Jiménez, Fernando | - |
dc.contributor.author | Kamińska, Joanna | - |
dc.contributor.author | Sciavicco, Guido | - |
dc.contributor.author | Lucena-Sánchez, Estrella | - |
dc.date.accessioned | 2025-01-18T19:08:12Z | - |
dc.date.available | 2025-01-18T19:08:12Z | - |
dc.date.issued | 2021-09-07 | - |
dc.identifier.citation | Applied Soft Computing 113 (2021) 107850 | es |
dc.identifier.issn | Print: 1568-4946 | - |
dc.identifier.issn | Electronic: 1872-9681 | - |
dc.identifier.uri | http://hdl.handle.net/10201/148742 | - |
dc.description.abstract | There is a very extensive literature on the design and test of models of environmental pollution, especially in the atmosphere. Current and recent models, however, are focused on explaining the causes and their temporal relationships, but do not explore, in full detail, the performances of pure forecasting models. We consider here three years of data that contain hourly nitrogen oxides concentrations in the air; exposure to high concentrations of these pollutants has been indicated as potential cause of numerous respiratory, circulatory, and even nervous diseases. Nitrogen oxides concentrations are paired with meteorological and vehicle traffic data for each measure. We propose a methodology based on exactness and robustness criteria to compare different pollutant forecasting models and their characteristics. 1DCNN, GRU and LSTM deep learning models, along with Random Forest, Lasso Regression and Support Vector Machines regression models, are analyzed with different window sizes. As a result, our best models offer a 24-hours ahead, very reliable prediction of the concentration of pollutants in the air in the considered area, which can be used to plan, and implement, different kinds of interventions and measures to mitigate the effects on the population. | es |
dc.format | application/pdf | es |
dc.format.extent | 25 | es |
dc.language | eng | es |
dc.publisher | Elsevier | es |
dc.relation | This work was partially funded by the SITSUS project (Ref: RTI2018-094832-B-I00), given by the Spanish Ministry of Science, Innovation and Universities (MCIU), the Spanish Agency for Research (AEI) and by the European Fund for Regional Development (FEDER). This work was supported by the Science and Technology Agency, Séneca Foundation, Comunidad Autónoma Región de Murcia , Spain through the research projects 00004/COVI/20 and 00007/COVI/20. | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Air quality | es |
dc.subject | Multivariate time series forecasting | es |
dc.subject | Deep learning | es |
dc.subject | Multi-criteria decision support systems | es |
dc.subject.other | CDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática.::004.9 - Técnicas basadas en el ordenador orientadas a aplicaciones | es |
dc.title | A time series forecasting based multi-criteria methodology for air quality prediction | es |
dc.type | info:eu-repo/semantics/article | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S1568494621007729?via%3Dihub | - |
dc.identifier.doi | https://doi.org/10.1016/j.asoc.2021.107850 | - |
dc.contributor.department | Ingeniería de la Información y las Comunicaciones | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A Time Series forecasting based multicreteria_ASC_2021.pdf | A time series forecasting based multi-criteria methodology for air quality prediction | 2,57 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons