Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.asoc.2021.107850

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorEspinosa Fernández, Raquel-
dc.contributor.authorPalma Méndez, José Tomás-
dc.contributor.authorJiménez, Fernando-
dc.contributor.authorKamińska, Joanna-
dc.contributor.authorSciavicco, Guido-
dc.contributor.authorLucena-Sánchez, Estrella-
dc.date.accessioned2025-01-18T19:08:12Z-
dc.date.available2025-01-18T19:08:12Z-
dc.date.issued2021-09-07-
dc.identifier.citationApplied Soft Computing 113 (2021) 107850es
dc.identifier.issnPrint: 1568-4946-
dc.identifier.issnElectronic: 1872-9681-
dc.identifier.urihttp://hdl.handle.net/10201/148742-
dc.description.abstractThere is a very extensive literature on the design and test of models of environmental pollution, especially in the atmosphere. Current and recent models, however, are focused on explaining the causes and their temporal relationships, but do not explore, in full detail, the performances of pure forecasting models. We consider here three years of data that contain hourly nitrogen oxides concentrations in the air; exposure to high concentrations of these pollutants has been indicated as potential cause of numerous respiratory, circulatory, and even nervous diseases. Nitrogen oxides concentrations are paired with meteorological and vehicle traffic data for each measure. We propose a methodology based on exactness and robustness criteria to compare different pollutant forecasting models and their characteristics. 1DCNN, GRU and LSTM deep learning models, along with Random Forest, Lasso Regression and Support Vector Machines regression models, are analyzed with different window sizes. As a result, our best models offer a 24-hours ahead, very reliable prediction of the concentration of pollutants in the air in the considered area, which can be used to plan, and implement, different kinds of interventions and measures to mitigate the effects on the population.es
dc.formatapplication/pdfes
dc.format.extent25es
dc.languageenges
dc.publisherElsevieres
dc.relationThis work was partially funded by the SITSUS project (Ref: RTI2018-094832-B-I00), given by the Spanish Ministry of Science, Innovation and Universities (MCIU), the Spanish Agency for Research (AEI) and by the European Fund for Regional Development (FEDER). This work was supported by the Science and Technology Agency, Séneca Foundation, Comunidad Autónoma Región de Murcia , Spain through the research projects 00004/COVI/20 and 00007/COVI/20.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAir qualityes
dc.subjectMultivariate time series forecastinges
dc.subjectDeep learninges
dc.subjectMulti-criteria decision support systemses
dc.subject.otherCDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática.::004.9 - Técnicas basadas en el ordenador orientadas a aplicacioneses
dc.titleA time series forecasting based multi-criteria methodology for air quality predictiones
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1568494621007729?via%3Dihub-
dc.identifier.doihttps://doi.org/10.1016/j.asoc.2021.107850-
dc.contributor.departmentIngeniería de la Información y las Comunicaciones-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
A Time Series forecasting based multicreteria_ASC_2021.pdfA time series forecasting based multi-criteria methodology for air quality prediction2,57 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons