Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1016/j.future.2022.05.020


Título: | Multi-objective evolutionary spatio-temporal forecasting of air pollution |
Fecha de publicación: | 31-may-2022 |
Editorial: | Elsevier |
Cita bibliográfica: | Future Generation Computer Systems 136 (2022) 15-33 |
ISSN: | Print: 0167-739X Electronic: 1872-7115 |
Materias relacionadas: | CDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática.::004.9 - Técnicas basadas en el ordenador orientadas a aplicaciones |
Palabras clave: | Spatio-temporal forecasting Air pollution Multi-objective optimization Machine learning Ensemble learming |
Resumen: | Nowadays, air pollution forecasting modeling is vital to achieve an increase in air quality, allowing an improvement of ecosystems and human health. It is important to consider the spatial characteristics of the data, as they allow us to infer predictions in those areas for which no information is available. In the current literature, there are a large number of proposals for spatio-temporal air pollution forecasting. In this paper we propose a novel spatio-temporal approach based on multi-objective evolutionary algorithms for the identification of multiple non-dominated linear regression models and their combination in an ensemble learning model for air pollution forecasting. The ability of multi-objective evolutionary algorithms to find a Pareto front of solutions is used to build multiple forecast models geographically distributed in the area of interest. The proposed method has been applied for one-week NO prediction in southeastern Spain and has obtained promising results in statistical comparison with other approaches such as the union of datasets or the interpolation of the predictions for each monitoring station. The validity of the proposed spatio-temporal approach is thus demonstrated, opening up a new field in air pollution engineering. |
Autor/es principal/es: | Espinosa Fernández, Raquel Jiménez Barrionuevo, Fernando Palma Méndez, José Tomás |
Versión del editor: | https://www.sciencedirect.com/science/article/pii/S0167739X22001911?via%3Dihub |
URI: | http://hdl.handle.net/10201/148740 |
DOI: | https://doi.org/10.1016/j.future.2022.05.020 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 19 |
Derechos: | info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
Descripción: | © 2022 The Author(s). This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. This document is the Published version of a Published Work that appeared in final form in Future Generation Computer Systems. To access the final edited and published work see https://doi.org/10.1016/j.future.2022.05.020 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Multi objective evolutionary spatio_temporal forecasting_FGCS_2022.pdf | Multi-objective evolutionary spatio-temporal forecasting of air pollution | 2,32 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons