Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.3390/rs11243000

Título: Isolation forests to evaluate class separability and the representativeness of training and validation areas in land cover classification
Fecha de publicación: 13-dic-2019
Editorial: MDPI
Cita bibliográfica: Remote Sensing, 2019, Vol. 11 (24) : 3000
ISSN: Electronic: 2072-4292
Materias relacionadas: CDU::9 - Geografía e historia
Palabras clave: Training area representativeness
Class separability
Landsat-8
Random tree ensembles
Random forest
Resumen: Supervised land cover classification from remote sensing imagery is based on gathering a set of training areas to characterise each of the classes and to train a predictive model that is then used to predict land cover in the rest of the image. This procedure relies mainly on the assumptions of statistical separability of the classes and the representativeness of the training areas. This paper uses isolation forests, a type of random tree ensembles, to analyse both assumptions and to easily correct lack of representativeness by digitising new training areas where needed to improve the classification of a Landsat-8 set of images with Random Forest. The results show that the improved set of training areas after the isolation forest analysis is more representative of the whole image and increases classification accuracy. Besides, the distribution of isolation values can be useful to estimate class separability. A class separability parameter that summarises such distributions is proposed. This parameter is more correlated to omission and commission errors than other separability measures such as the Jeffries–Matusita distance.
Autor/es principal/es: Alonso-Sarria, Francisco
Valdivieso Ros, Carmen
Gomariz Castillo, Francisco
Versión del editor: https://www.mdpi.com/2072-4292/11/24/3000
URI: http://hdl.handle.net/10201/147874
DOI: https://doi.org/10.3390/rs11243000
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 21
Derechos: info:eu-repo/semantics/openAccess
Atribución 4.0 Internacional
Descripción: © 2019 by the authors. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published Manuscript version of a Published Work that appeared in final form in Remote Sensing. To access the final edited and published work see https://doi.org/10.3390/rs11243000
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2019_AlonsoSarria_etal.pdfPublished version36,85 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons