Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.3390/rs11243000


Título: | Isolation forests to evaluate class separability and the representativeness of training and validation areas in land cover classification |
Fecha de publicación: | 13-dic-2019 |
Editorial: | MDPI |
Cita bibliográfica: | Remote Sensing, 2019, Vol. 11 (24) : 3000 |
ISSN: | Electronic: 2072-4292 |
Materias relacionadas: | CDU::9 - Geografía e historia |
Palabras clave: | Training area representativeness Class separability Landsat-8 Random tree ensembles Random forest |
Resumen: | Supervised land cover classification from remote sensing imagery is based on gathering a set of training areas to characterise each of the classes and to train a predictive model that is then used to predict land cover in the rest of the image. This procedure relies mainly on the assumptions of statistical separability of the classes and the representativeness of the training areas. This paper uses isolation forests, a type of random tree ensembles, to analyse both assumptions and to easily correct lack of representativeness by digitising new training areas where needed to improve the classification of a Landsat-8 set of images with Random Forest. The results show that the improved set of training areas after the isolation forest analysis is more representative of the whole image and increases classification accuracy. Besides, the distribution of isolation values can be useful to estimate class separability. A class separability parameter that summarises such distributions is proposed. This parameter is more correlated to omission and commission errors than other separability measures such as the Jeffries–Matusita distance. |
Autor/es principal/es: | Alonso-Sarria, Francisco Valdivieso Ros, Carmen Gomariz Castillo, Francisco |
Versión del editor: | https://www.mdpi.com/2072-4292/11/24/3000 |
URI: | http://hdl.handle.net/10201/147874 |
DOI: | https://doi.org/10.3390/rs11243000 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 21 |
Derechos: | info:eu-repo/semantics/openAccess Atribución 4.0 Internacional |
Descripción: | © 2019 by the authors. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published Manuscript version of a Published Work that appeared in final form in Remote Sensing. To access the final edited and published work see https://doi.org/10.3390/rs11243000 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2019_AlonsoSarria_etal.pdf | Published version | 36,85 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons