Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.3390/rs11243000

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorAlonso-Sarria, Francisco-
dc.contributor.authorValdivieso Ros, Carmen-
dc.contributor.authorGomariz Castillo, Francisco-
dc.date.accessioned2024-12-29T12:20:59Z-
dc.date.available2024-12-29T12:20:59Z-
dc.date.issued2019-12-13-
dc.identifier.citationRemote Sensing, 2019, Vol. 11 (24) : 3000es
dc.identifier.issnElectronic: 2072-4292-
dc.identifier.urihttp://hdl.handle.net/10201/147874-
dc.description© 2019 by the authors. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published Manuscript version of a Published Work that appeared in final form in Remote Sensing. To access the final edited and published work see https://doi.org/10.3390/rs11243000-
dc.description.abstractSupervised land cover classification from remote sensing imagery is based on gathering a set of training areas to characterise each of the classes and to train a predictive model that is then used to predict land cover in the rest of the image. This procedure relies mainly on the assumptions of statistical separability of the classes and the representativeness of the training areas. This paper uses isolation forests, a type of random tree ensembles, to analyse both assumptions and to easily correct lack of representativeness by digitising new training areas where needed to improve the classification of a Landsat-8 set of images with Random Forest. The results show that the improved set of training areas after the isolation forest analysis is more representative of the whole image and increases classification accuracy. Besides, the distribution of isolation values can be useful to estimate class separability. A class separability parameter that summarises such distributions is proposed. This parameter is more correlated to omission and commission errors than other separability measures such as the Jeffries–Matusita distance.es
dc.formatapplication/pdfes
dc.format.extent21es
dc.languageenges
dc.publisherMDPIes
dc.relationThis research was funded by the Spanish Ministerio de Economía, Industria y Competitividad (MINECO), la Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER). Project CGL2017-84625-C2-2-Res
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectTraining area representativenesses
dc.subjectClass separabilityes
dc.subjectLandsat-8es
dc.subjectRandom tree ensembleses
dc.subjectRandom forestes
dc.subject.otherCDU::9 - Geografía e historiaes
dc.titleIsolation forests to evaluate class separability and the representativeness of training and validation areas in land cover classificationes
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/11/24/3000es
dc.identifier.doihttps://doi.org/10.3390/rs11243000-
dc.contributor.departmentDepartamento de Geografía-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2019_AlonsoSarria_etal.pdfPublished version36,85 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons