Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1080/21681163.2024.2314566


Título: | Expanding the deep-learning model to diagnosis LVNC: limitations and trade-offs |
Fecha de publicación: | 11-feb-2024 |
Fecha de defensa / creación: | 17-ene-2023 |
Editorial: | Tailor & Francis |
Cita bibliográfica: | Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization |
ISSN: | 2168-1171 2168-1163 |
Materias relacionadas: | CDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática. CDU::6 - Ciencias aplicadas::61 - Medicina |
Palabras clave: | Left ventricular non-compaction diagnosis Training with different cardiomyopathies U-Net convolutional neural network MRI image segmentation |
Resumen: | Hyper-trabeculation or non-compaction in the left ventricle of the myocardium (LVNC) is a recently classified form of cardiomyopathy. Several methods have been proposed to quantify the trabeculae accurately in the left ventricle, but there is no general agreement in the medical community to use a particular approach. In the previous work, we proposed DL-LVTQ, a deep-learning approach for left ventricular trabecular quantification based on a U-Net CNN architecture. In this work, we have extended and adapted DL-LVTQ to cope with patients with different particularities and cardiomyopathies. Patient images were taken from different scanners and hospitals. We have modified and adapted the U-Net convolutional neural network to account for the different particularities of a heterogeneous group of patients with multiple cardiomyopathies and inherited cardiomyopathies. The inclusion of new groups of patients has increased the accuracy, specificity and Kappa values while maintaining the sensitivity of the proposed method. Therefore, a better-prepared diagnosis tool is ready for various cardiomyopathies with different characteristics. Cardiologists have considered that 98.9% of the evaluated outputs are verified clinically for diagnosis. Therefore, the high precision to segment the different cardiac structures allows us to make a robust diagnostic system bjective and faster, decreasing human error and time spent. |
Autor/es principal/es: | Bernabé García, Gregorio González Férez, Pilar García Carrasco, José Manuel Casas, Guillem González Carrillo, Josefa |
Versión del editor: | https://www.tandfonline.com/doi/epdf/10.1080/21681163.2024.2314566?needAccess=true |
URI: | http://hdl.handle.net/10201/139310 |
DOI: | https://doi.org/10.1080/21681163.2024.2314566 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 10 |
Derechos: | info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
Descripción: | ©2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Published Manuscript version of a Published Work that appeared in final form in Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. To access the final edited and published work see https://doi.org/10.1080/21681163.2024.2314566 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2024_expanding_LVNC.pdf | 3,17 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons